Skip to main content

Advertisement

Log in

Combining femoral and acetabular parameters in femoroacetabular impingement: the omega surface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The concept of femoroacetabular impingement (FAI) proposes the development of hip osteoarthritis through motion-induced damage to the acetabular cartilage and labrum. Thus, dynamic interaction of the proximal femur and acetabulum is the crux of FAI. Several types of FAI can be distinguished, but FAI classification is mostly done with separate parameters for acetabular and femoral morphology on planar images, without direct representation of the femoroacetabular interaction. Five main parameters influence impingement between the proximal femur and the acetabular rim: alpha and center edge angles, acetabular and femoral version, and neck-shaft angle. We attempted to integrate these five parameters in order to reflect their interaction and derive a signal comprehensive parameter, the omega surface, to characterize the severity of FAI. The omega surface is a CT-based delineation of the femoral head surface that represents the area for impingement-free motion. The omega surface is determined with dedicated software (Articulis™) and can be determined for various positions of the hip joint. We determined the omega surface in a pilot study for five different hip morphotypes and found the omega surface was smaller in FAI morphotypes than in a normal hip. Furthermore, the omega surface was smaller in symptomatic versus control subjects with FAI morphotypes. The omega surface may therefore help in improved differentiation between symptomatic and asymptomatic FAI hips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arbabi E, Chegini S, Boulic R, Tannast M, Ferguson SJ, Thalmann D (2010) Penetration depth method—novel real-time strategy for evaluating femoroacetabular impingement. J Orthop Res 28(7):880–886

    PubMed  Google Scholar 

  2. Audenaert EA, Peeters I, Vigneron L, Baelde N, Pattyn C (2012) Hip morphological characteristics and range of internal rotation in femoroacetabular impingement. Am J Sports Med 40(6):1329–1336

    Article  PubMed  Google Scholar 

  3. Bardakos NV, Villar RN (2009) Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg Br 91(2):162–169

    Article  CAS  PubMed  Google Scholar 

  4. Beck M (2011) Letter to the editor: cams and pincer impingement are distinct, not mixed: the acetabular pathomorphology of femoroacetabular impingement. Clin Orthop Relat Res 469(4):1207 author reply 1208-9

    Article  PubMed Central  PubMed  Google Scholar 

  5. Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87(7):1012–1018

    Article  CAS  PubMed  Google Scholar 

  6. Cobb J, Logishetty K, Davda K, Iranpour F (2010) Cams and pincer impingement are distinct, not mixed: the acetabular pathomorphology of femoroacetabular impingement. Clin Orthop Relat Res 468(8):2143–2151

    Article  PubMed Central  PubMed  Google Scholar 

  7. Elson RA, Aspinall GR (2008) Measurement of hip range of flexion-extension and straight-leg raising. Clin Orthop Relat Res 466(2):281–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120

    PubMed  Google Scholar 

  9. Ganz R, Leunig M, Leunig-Ganz K, Harris WH (2008) The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res 466(2):264–272

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hack K, Di Primio G, Rakhra K, Beaule PE (2010) Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am 92(14):2436–2444

    Article  PubMed  Google Scholar 

  11. Hogervorst T, Bouma HW, de Vos J (2009) Evolution of the hip and pelvis. Acta Orthop 80(336):1–39

    Article  Google Scholar 

  12. Ito K, Minka MA 2nd, Leunig M, Werlen S, Ganz R (2001) Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br 83(2):171–176

    Article  CAS  PubMed  Google Scholar 

  13. Krekel PR, de Bruin PW, Valstar ER, Post FH, Rozing PM, Botha CP (2009) Evaluation of bone impingement prediction in pre-operative planning for shoulder arthroplasty. Proc Inst Mech Eng H 223(7):813–822

    Article  CAS  PubMed  Google Scholar 

  14. Milone MT, Bedi A, Poultsides L, Magennis E, Byrd JW, Larson CM, Kelly BT (2013) Novel CT-based three-dimensional software improves the characterization of cam morphology. Clin Orthop Relat Res 471(8):2484–2491

    Article  PubMed Central  PubMed  Google Scholar 

  15. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84(4):556–560

    Article  CAS  PubMed  Google Scholar 

  16. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J (2002) The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br 84(4):556–560

    Article  PubMed  Google Scholar 

  17. Sun H, Inaoka H, Fukuoka Y, Masuda T, Ishida A, Morita S (2007) Range of motion measurement of an artificial hip joint using CT images. Med Biol Eng Comput 45(12):1229–1235

    Article  PubMed  Google Scholar 

  18. Turley GA, Williams MA, Wellings RM, Griffin DR (2013) Evaluation of range of motion restriction within the hip joint. Med Biol Eng Comput 51(4):467–477

    Article  PubMed Central  PubMed  Google Scholar 

  19. Weisstein EW (2013) Dot product. MathWorld: a wolfram web resource. http://mathworld.wolfram.com/DotProduct.html

  20. Weisstein EW (2013) Spherical coordinates. MathWorld: a wolfram web resource http://mathworld.wolfram.com/SphericalCoordinates.html

  21. Wiberg G (1953) Shelf operation in congenital dysplasia of the acetabulum and in subluxation and dislocation of the hip. J Bone Joint Surg Am 35-A(1):65–80

    CAS  PubMed  Google Scholar 

  22. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548

    Article  PubMed  Google Scholar 

  23. Wyss TF, Clark JM, Weishaupt D, Notzli HP (2007) Correlation between internal rotation and bony anatomy in the hip. Clin Orthop Relat Res 460:152–158

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Peter Krekel (Clinical Graphics, Delft, The Netherlands) for technical assistance and suggestions and Erik Boekestein for his ICC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinse Bouma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouma, H., Hogervorst, T., Audenaert, E. et al. Combining femoral and acetabular parameters in femoroacetabular impingement: the omega surface. Med Biol Eng Comput 53, 1239–1246 (2015). https://doi.org/10.1007/s11517-015-1392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1392-6

Keywords

Navigation