Skip to main content

Advertisement

Log in

The Role of β-Blockers in Melanoma

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Melanoma is one of the most aggressive and less chemotherapy-responsive human cancers, representing a major public health issue worldwide. The early diagnosis still represents the best approach in order to reduce mortality, especially in advanced stages. Preclinical evidence, collected through several in vitro and in vivo models, has been accumulating about the pathophysiological involvement of β-adrenoceptors in melanoma progression. This involvement has been paralleled by the evidence that drugs blocking β-adrenoceptors (β-blockers) may have a relevant role in the treatment of melanoma and in the prevention of its progression. β-blockers are a class of drugs extensively used in clinical practice, not limited to cardiovascular therapeutics. Evidence collected through retrospective and prospective observational studies suggests that treatment with β-blockers, mainly propranolol, is able to delay melanoma progression. Although conclusive evidence is still lacking, current knowledge proposes β-blockers as an opportunity for antitumor treatment in melanoma. Clinical trials are needed in order to prove their claimed efficacy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Algire GH, Legallais FY (1951) Vascular reactions of Normal and malignant tissue in vivo. IV The effect of peripheral hypotension on transplanted tumors. J Natl Cancer Inst 12:399–421

    CAS  PubMed  Google Scholar 

  • Algire GH, Legallais FY (1958) Growth and vascularization of transplanted mouse melanoma. In: The biology of melanomas. Academic Press, Inc, New York, pp 159–170

    Google Scholar 

  • Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144:317–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balligand JL (2013) Beta3-adrenoreceptors in cardiovascular diseases: new roles for an "old" receptor. Curr Drug Deliv 10:64–66

    CAS  PubMed  Google Scholar 

  • Bond RA, Bylund DB, Eikenburg DC, Hieble JP, Hills R, Minneman KP, Parra S (2019) Adrenoceptors: β3-adrenoceptor. Last modified on 27/02/2019. IUPHAR/BPS Guide Pharmacol. http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=30. Accessed 17 Apr 2019

  • Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA (2017) β-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res 77:5639–5651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calvani M, Pelon F, Comito G, Taddei ML, Moretti S, Innocenti S, Nassini R, Gerlini G, Borgognoni L, Bambi F, Giannoni E, Filippi L, Chiarugi P (2015) Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoceptors during melanoma progression. Oncotarget 6:4615–4632

    PubMed  Google Scholar 

  • Calvani M, Cavallini L, Tondo A, Spinelli V, Ricci L, Pasha A, Bruno G, Buonvicino D, Bigagli E, Vignoli M, Bianchini F, Sartiani L, Lodovici M, Semeraro R, Fontani F, De Logu F, Dal Monte M, Chiarugi P, Favre C, Filippi L (2018) β3-Adrenoreceptors control mitochondrial dormancy in melanoma and embryonic stem cells. Oxidative Med Cell Longev 2018:6816508

    Google Scholar 

  • Chen L, Tsai TF (2017) The role of β-blockers in dermatological treatment: a review. J Eur Acad Dermatol Venereol 32:363–371

    PubMed  Google Scholar 

  • Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M (1994) Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol 45:490–499

    CAS  PubMed  Google Scholar 

  • Cleveland KH, Yeung S, Huang KM, Liang S, Andresen BT, Huang Y (2018) Phosphoproteome profiling provides insight into the mechanism of action for carvedilol-mediated cancer prevention. Mol Carcinog 57:997–1007

    CAS  PubMed  Google Scholar 

  • Coelho M, Soares-Silva C, Brandão D, Marino F, Cosentino M, Ribeiro L (2017) β-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol 143:275–291

    CAS  PubMed  Google Scholar 

  • Dal Monte M, Casini G, Filippi L, Nicchia GP, Svelto M, Bagnoli P (2013) Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. J Mol Med 91:1407–1419

    CAS  PubMed  Google Scholar 

  • De Giorgi V, Grazzini M, Gandini S, Benemei S, Lotti T, Marchionni N, Geppetti P (2011) Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 171:779–781

    PubMed  Google Scholar 

  • De Giorgi V, Gandini S, Grazzini M, Benemei S, Marchionni N, Geppetti P (2013) Effect of β-blockers and other antihypertensive drugs on the risk of melanoma recurrence and death. Mayo Clin Proc 88:1196–1203

    PubMed  Google Scholar 

  • De Giorgi V, Grazzini M, Benemei S, Marchionni N, Geppetti P, Gandini S (2017) β-Blocker use and reduced disease progression in patients with thick melanoma: 8 years of follow-up. Melanoma Res 27:268–270

    PubMed  Google Scholar 

  • De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, Geppetti P, Gandini S (2018) Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol 4(2):e172908

    PubMed  Google Scholar 

  • Edlich RF, Rogers W, DeShazo CV Jr, Aust JB (1966) Effect of vasoactive drugs on tissue blood flow in the hamster melanoma. Cancer Res 26:1420–1424

    CAS  PubMed  Google Scholar 

  • Failing JJ, Finnes HD, Kottschade LA, Allred JB, Markovic SN (2016) Effects of commonly used chronic medications on the outcomes of ipilimumab therapy in patients with metastatic melanoma. Melanoma Res 26:609–615

    CAS  PubMed  Google Scholar 

  • Glasner A, Avraham R, Rosenne E, Bensih M, Zmora O, Shemer S, Meiboom H, Ben-Eliyahu S (2010) Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol 184:2449–2457

    CAS  PubMed  Google Scholar 

  • Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S (2011) Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 253:798–810

    PubMed  Google Scholar 

  • Goldstein DS (2003) Catecholamines and stress. Endocr Regul 37:69–80

    CAS  PubMed  Google Scholar 

  • Guillino PM, Grantham FH (1961) Studies on the exchange of fluid between host and tumor. II. The blood flow of hepatomas and other tumors in rats and mice. J Natl Cancer Inst 27:1465–1491

    Google Scholar 

  • Guillino PM, Grantham FH (1962) Studies on the exchange of fluid between host and tumor. III. Regulation of blood flow in hepatomas and other rat tumors. J Natl Cancer Inst 28:211–230

    Google Scholar 

  • Hassan S, Karpova Y, Flores A, D'Agostino R Jr, Kulik G (2013) Surgical stress delays prostate involution in mice. PLoS One 8:e78175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K (2016) Adrenoceptor modulators and cancer progression. J Anesth 30:365–368

    PubMed  Google Scholar 

  • Jia Y, Li F, Liu YF, Zhao JP, Leng MM, Chen L (2017) Depression and cancer risk: a systematic review and meta-analysis. Public Health 149:138–148

    CAS  PubMed  Google Scholar 

  • Katzung BG (2012) Introduction to autonomic pharmacology in basic & clinical pharmacology, 12th edn. The McGraw-Hill, New York

    Google Scholar 

  • Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, Repasky EA, Drabick JJ, Schell TD (2017) Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7:e1405205

    PubMed  PubMed Central  Google Scholar 

  • Krizanova O, Babula P, Pacak K (2016) Stress, catecholaminergic system and cancer. Stress 9:419–428

    Google Scholar 

  • Kuang X, Qi M, Peng C, Zhou C, Su J, Zeng W, Liu H, Zhang J, Chen M, Shen M, Xie X, Li F, Zhao S, Li Q, Luo Z, Chen J, Tao J, He Y, Chen X (2017) Propranolol enhanced the anti-tumor effect of sunitinib by inhibiting proliferation and inducing G0/G1/S phase arrest in malignant melanoma. Oncotarget 9:802–811

    PubMed  PubMed Central  Google Scholar 

  • Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taïeb A (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2649–2651

    CAS  PubMed  Google Scholar 

  • Lameshow S, Sørensen HT, Phillips G, Yang EV, Antonsen S, Riis AH, Lesinski GB, Jackson R, Glaser R (2011) β-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomark Prev 20:2273–2279

    Google Scholar 

  • Livingstone E, Hollestein LM, van Herk-Sukel MP, van de Poll-Franse L, Nijsten T, Schadendorf D, de Vries E (2013) β-Blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur J Cancer 49:3863–3871

    CAS  PubMed  Google Scholar 

  • López-Sendón J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P, Torp-Pedersen C, Task force on Beta-blockers of the European Society of Cardiology (2004) Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J 25:1341–1362

    PubMed  Google Scholar 

  • Maccari S, Buoncervello M, Rampin A, Spada M, Macchia D, Giordani L, Stati T, Bearzi C, Catalano L, Rizzi R, Gabriele L, Marano G (2017) Biphasic effects of propranolol on tumour growth in B16F10 melanoma-bearing mice. Br J Pharmacol 174(2):139–149

    CAS  PubMed  Google Scholar 

  • Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71

    CAS  PubMed  Google Scholar 

  • Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, Sultani H, Wilken R, Martinez SR, Patel F (2015) Metastatic melanoma—a review of current and future treatment options. Acta Derm Venereol 95:516–524

    CAS  PubMed  Google Scholar 

  • McCourt C, Coleman HG, Murray LJ, Cantwell MM, Dolan O, Powe DG, Cardwell CR (2014) Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case–control study. Br J Dermatol 170:930–938

    CAS  PubMed  Google Scholar 

  • Min HY, Boo HJ, Lee HJ, Jang HJ, Yun HJ, Hwang SJ, Smith JK, Lee HJ, Lee HY (2016) Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation. Oncotarget 7:70936–70947

    PubMed  PubMed Central  Google Scholar 

  • Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P (2013) β-Adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Investig 93:279–290

    CAS  PubMed  Google Scholar 

  • Munabi NC, England RW, Edwards AK, Kitajewski AA, Tan QK, Weinstein A, Kung JE, Wilcox M, Kitajewski JK, Shawber CJ, Wu JK (2016) Propranolol targets hemangioma stem cells via cAMP and mitogen-activated protein kinase regulation. Stem Cells Transl Med 5:45–55

    CAS  PubMed  Google Scholar 

  • Na Z, Qiao X, Hao X, Fan L, Xiao Y, Shao Y, Sun M, Feng Z, Guo W, Li J, Li J, Li D (2018) The effects of beta-blocker use on cancer prognosis: a meta-analysis based on 319,006 patients. Onco Targets Ther 11:4913–4944

    PubMed  PubMed Central  Google Scholar 

  • Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, Norris MD, Trahair T, Andre N, Kavallaris M (2013) β-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer 108:2485–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rains SL, Amaya CN, Bryan BA (2017) Beta-adrenergic receptors are expressed across diverse cancers. Oncoscience 4:95–105

    PubMed  PubMed Central  Google Scholar 

  • Sanzo M, Colucci R, Arunachalam M, Berti S, Moretti S (2010) Stress as a possible mechanism in melanoma progression. Dermatol Res Pract 2010:483493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller HM, Cole B (1989) Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis 10:1753–1755

    CAS  PubMed  Google Scholar 

  • Sereni F, Dal Monte M, Filippi L, Bagnoli P (2015) Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedeberg's Arch Pharmacol 388:1317–1331

    CAS  Google Scholar 

  • Spiegel D (1994) Health caring. Psychosocial support for patients with cancer. Cancer 74:1453–1457

    CAS  PubMed  Google Scholar 

  • Stanojkovic TP, Zizak Z, Mihailovic-Stanojevic N, Petrovic T, Juranic Z (2005) Inhibition of proliferation on some neoplastic cell lines-act of carvedilol and captopril. Exp Clin Cancer Res 24:387–395

    CAS  Google Scholar 

  • Steinkraus V, Nose M, Mensing H, Körner C (1990) Radioligand binding characteristics of beta 2-adrenoceptors of cultured melanoma cells. Br J Dermatol 123:163–170

    CAS  PubMed  Google Scholar 

  • Tang J, Li Z, Lu L, Cho CH (2013) β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 23:533–542

    CAS  PubMed  Google Scholar 

  • Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944

    CAS  PubMed  Google Scholar 

  • Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, Obrador E, Estrela JM (2013) Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6- and glutathione-dependent mechanism. J Transl Med 11:72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weberpals J, Jansen L, Carr PR, Hoffmeister M, Brenner H (2016) Beta blockers and cancer prognosis - the role of immortal time bias: a systematic review and meta-analysis. Cancer Treat Rev 47:1–11

    CAS  PubMed  Google Scholar 

  • Westfall TC, Westfall DP (2011) Adrenergic agonists and antagonists. In: Brunton LL (ed) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. The McGraw-Hill, New York

    Google Scholar 

  • WHO-Skin Cancer (2019) https://www.who.int/uv/faq/skincancer/en/index1.html. Accessed 11 Apr 2019

  • Wnorowski A, Sadowska M, Paul RK, Singh NS, Boguszewska-Czubara A, Jimenez L, Abdelmohsen K, Toll L, Jozwiak K, Bernier M, Wainer IW (2015) Activation of β2-adrenergic receptor by (R,R')-4′-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal 27:997–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel LJ, Le Gal FA (2015) Inhibition of human melanoma growth by a non-cardioselective β-blocker. Invest Dermatol 135:525–531

    CAS  Google Scholar 

  • Wrobel LJ, Bod L, Lengagne R, Kato M, Prévost-Blondel A, Le Gal FA (2016) Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget 7:77825–77837

    PubMed Central  Google Scholar 

  • Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH, Glaser R (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275

    CAS  PubMed  Google Scholar 

  • Yap A, Lopez-Olivo MA, Dubowitz J, Pratt G, Hiller J, Gottumukkala V, Sloan E, Riedel B, Schier R (2018) Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Br J Anaesth 21:45–57

    Google Scholar 

  • Zahalka AH, Arnal-Estapé A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, Frenette PS (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Ma QY, Hu HT, Zhang M (2010) β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther 10:19–29

    CAS  PubMed  Google Scholar 

  • Zhou C, Chen X, Zeng W, Peng C, Huang G, Li X, Ouyang Z, Luo Y, Xu X, Xu B, Wang W, He R, Zhang X, Zhang L, Liu J, Knepper TC, He Y, McLeod HL (2016) Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget 7:68314–68327

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo De Giorgi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Giorgi, V., Geppetti, P., Lupi, C. et al. The Role of β-Blockers in Melanoma. J Neuroimmune Pharmacol 15, 17–26 (2020). https://doi.org/10.1007/s11481-019-09876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09876-9

Keywords

Navigation