Skip to main content

Advertisement

Log in

Translational Regulation of HIV-1 Replication by HIV-1 Rev Cellular Cofactors Sam68, eIF5A, hRIP, and DDX3

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Nuclear export and translation of HIV-1 RNA are two important posttranscriptional events for HIV-1 gene expression and replication. HIV-1 Rev functions to export unspliced and incompletely spliced HIV-1 RNA from the nucleus to the cytoplasm; it requires interaction with several cellular cofactors such as Sam68, eIF5A, hRIP, and DDX3. Meanwhile, some studies have also implicated Rev and some of its cofactors such as Sam68 in HIV-1 RNA translation. Thus, in this study, we aimed to characterize the potential function of all these four Rev cofactors in HIV-1 RNA translation. Ectopic expression, siRNA knockdown, and trans-complementation assays confirmed that all these cofactors were very important for HIV-1 gene expression and production through Rev and, accordingly, Rev-dependent reporter gene expression. Importantly, these studies revealed for the first time that each of these cofactors also regulated Rev-independent reporter gene expression. To directly determine the roles of these cofactors in HIV-1 RNA translation, we designed and synthesized a full-length capped HIV-1 RNA in vitro, transfected it into cells to bypass the RNA nuclear export step, and determined HIV-1 Gag expression from the cytoplasmic RNA in the cells that had ectopically expressed or siRNA knocked down cofactors. Gag expression was found to closely correlate with the expression levels of all these cofactors. Furthermore, we took advantage of a HIV-1 internal ribosomal entry site (IRES)-based bicistronic reporter gene assay and determined the effects of these cofactors on cap-independent IRES-mediated HIV-1 translation. The results showed that DDX3, eIF5A, and hRIP enhanced HIV-1 IRES-mediated translation, whereas Sam68 did not. Taken together, these results show that HIV-1 Rev cofactors Sam68, eIF5A, hRIP, and DDX3 also function in the translation of HIV-1 RNA and suggest that the regulatory mechanisms of HIV-1 RNA translation are likely different among these cofactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ariumi Y, Kuroki M, Abe K, Dansako H, Ikeda M, Wakita T, Kato N (2007) DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol 81:13922–13926

    Article  PubMed  CAS  Google Scholar 

  • Arrigo SJ, Chen IS (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5:808–819

    Article  PubMed  CAS  Google Scholar 

  • Barksdale SK, Baker CC (1995) The human immunodeficiency virus type 1 Rev protein and the Rev-responsive element counteract the effect of an inhibitory 5′ splice site in a 3′ untranslated region. Mol Cell Biol 15:2962–2971

    PubMed  CAS  Google Scholar 

  • Bevec D, Jaksche H, Oft M, Wohl T, Himmelspach M, Pacher A, Schebesta M, Koettnitz K, Dobrovnik M, Csonga R, Lottspeich F, Hauber J (1996) Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Science 271:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Fridell RA, Madore S, Cullen BR (1995) Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82:485–494

    Article  PubMed  CAS  Google Scholar 

  • Brandt S, Blissenbach M, Grewe B, Konietzny R, Grunwald T, Uberla K (2007) Rev proteins of human and simian immunodeficiency virus enhance RNA encapsidation. PLoS Pathog 3:e54

    Article  PubMed  Google Scholar 

  • Brasey A, Lopez-Lastra M, Ohlmann T, Beerens N, Berkhout B, Darlix JL, Sonenberg N (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77:3939–3949

    Article  PubMed  CAS  Google Scholar 

  • Campbell LH, Borg KT, Haines JK, Moon RT, Schoenberg DR, Arrigo SJ (1994) Human immunodeficiency virus type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. J Virol 68:5433–5438

    PubMed  CAS  Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795

    Article  PubMed  CAS  Google Scholar 

  • Chesebro B, Wehrly K, Nishio J, Perryman S (1992) Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol 66:6547–6554

    PubMed  CAS  Google Scholar 

  • Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64:881–885

    PubMed  CAS  Google Scholar 

  • Coyle JH, Guzik BW, Bor YC, Jin L, Eisner-Smerage L, Taylor SJ, Rekosh D, Hammarskjold ML (2003) Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol 23:92–103

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino DM, Felber BK, Harrison JE, Pavlakis GN (1992) The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12:1375–1386

    PubMed  Google Scholar 

  • Emerman M, Vazeux R, Peden K (1989) The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Bray M, Rekosh D, Hammarskjold ML (1997) A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol 17:135–144

    PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817

    Article  PubMed  CAS  Google Scholar 

  • Felber BK, Drysdale CM, Pavlakis GN (1990) Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J Virol 64:3734–3741

    PubMed  CAS  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Fritz CC, Zapp ML, Green MR (1995) A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376:530–533

    Article  PubMed  CAS  Google Scholar 

  • Gallego J, Greatorex J, Zhang H, Yang B, Arunachalam S, Fang J, Seamons J, Lea S, Pomerantz RJ, Lever AM (2003) Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. J Biol Chem 278:40385–40391

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D (1997) Nuclear protein import. Curr Opin Cell Biol 9:412–419

    Article  PubMed  CAS  Google Scholar 

  • Grange J, Boyer V, Fabian-Fine R, Fredj NB, Sadoul R, Goldberg Y (2004) Somatodendritic localization and mRNA association of the splicing regulatory protein Sam68 in the hippocampus and cortex. J Neurosci Res 75:654–666

    Article  PubMed  CAS  Google Scholar 

  • Greatorex J, Gallego J, Varani G, Lever A (2002) Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol 322:543–557

    Article  PubMed  CAS  Google Scholar 

  • Gregio AP, Cano VP, Avaca JS, Valentini SR, Zanelli CF (2009) eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 380:785–790

    Article  PubMed  CAS  Google Scholar 

  • Groom HC, Anderson EC, Dangerfield JA, Lever AM (2009) Rev regulates translation of human immunodeficiency virus type 1 RNAs. J Gen Virol 90:1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Guatelli JC, Gingeras TR, Richman DD (1990) Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J Virol 64:4093–4098

    PubMed  CAS  Google Scholar 

  • Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN (1989) The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 63:1265–1274

    PubMed  CAS  Google Scholar 

  • He J, Landau NR (1995) Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor. J Virol 69:4587–4592

    PubMed  CAS  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385:645–649

    Article  PubMed  CAS  Google Scholar 

  • He JJ, Henao-Mejia J, Liu Y (2009) Sam68 functions in nuclear export and translation of HIV-1 RNA. RNA Biol 6:384–386

    Article  PubMed  CAS  Google Scholar 

  • Henao-Mejia J, He JJ (2009) Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp Cell Res 315:3381–3395

    Article  PubMed  CAS  Google Scholar 

  • Henao-Mejia J, Liu Y, Park IW, Zhang J, Sanford J, He JJ (2009) Suppression of HIV-1 Nef translation by Sam68 mutant-induced stress granules and nef mRNA sequestration. Mol Cell 33:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hope TJ, Huang XJ, McDonald D, Parslow TG (1990) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 87:7787–7791

    Article  PubMed  CAS  Google Scholar 

  • Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi Gandolfi D, Park MH, Pe’ery T, Mathews MB (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6:90

    Article  PubMed  Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    Article  PubMed  CAS  Google Scholar 

  • Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97:583–598

    Article  PubMed  CAS  Google Scholar 

  • Kalland KH, Szilvay AM, Brokstad KA, Saetrevik W, Haukenes G (1994) The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments. Mol Cell Biol 14:7436–7444

    PubMed  CAS  Google Scholar 

  • Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Hashimoto I, Nishikawa M, Fujisawa JI (1996) A role for Rev in the association of HIV-1 gag mRNA with cytoskeletal beta-actin and viral protein expression. Biochimie 78:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Kjems J, Frankel AD, Sharp PA (1991) Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev. Cell 67:169–178

    Article  PubMed  CAS  Google Scholar 

  • Knight DM, Flomerfelt FA, Ghrayeb J (1987) Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Science 236:837–840

    Article  PubMed  CAS  Google Scholar 

  • Lai MC, Lee YH, Tarn WY (2008) The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell 19:3847–3858

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R (2008) Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res 36:4708–4718

    Article  PubMed  CAS  Google Scholar 

  • Levin A, Hayouka Z, Brack-Werner R, Volsky DJ, Friedler A, Loyter A (2009) Novel regulation of HIV-1 replication and pathogenicity: Rev inhibition of integration. Protein Eng Des Sel 22:753–763

    Article  PubMed  CAS  Google Scholar 

  • Levin A, Rosenbluh J, Hayouka Z, Friedler A, Loyter A (2010) Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins. Mol Med 16:34–44

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Hensel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11:3053–3058

    PubMed  CAS  Google Scholar 

  • Li J, Liu Y, Kim BO, He JJ (2002a) Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol 76:8374–8382

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu Y, Park IW, He JJ (2002b) Expression of exogenous Sam68, the 68-kilodalton SRC-associated protein in mitosis, is able to alleviate impaired Rev function in astrocytes. J Virol 76:4526–4535

    Article  PubMed  CAS  Google Scholar 

  • Lukong KE, Richard S (2003) Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta 1653:73–86

    PubMed  CAS  Google Scholar 

  • Luo Y, Yu H, Peterlin BM (1994) Cellular protein modulates effects of human immunodeficiency virus type 1 Rev. J Virol 68:3850–3856

    PubMed  CAS  Google Scholar 

  • Malim MH, Cullen BR (1993) Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 13:6180–6189

    PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989) Functional dissection of the HIV-1 Rev trans-activator—derivation of a trans-dominant repressor of Rev function. Cell 58:205–214

    Article  PubMed  CAS  Google Scholar 

  • Mamiya N, Worman HJ (1999) Hepatitis C virus core protein binds to a DEAD box RNA helicase. J Biol Chem 274:15751–15756

    Article  PubMed  CAS  Google Scholar 

  • Marsh K, Soros V, Cochrane A (2008) Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA. Retrovirology 5:97

    Article  PubMed  Google Scholar 

  • McLaren M, Cochrane A (2009) Mapping of determinants involved in the stimulation of HIV-1 expression by Sam68. Virology 385:93–104

    Article  PubMed  CAS  Google Scholar 

  • Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Modem S, Badri KR, Holland TC, Reddy TR (2005) Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 33:873–879

    Article  PubMed  CAS  Google Scholar 

  • Nasioulas G, Hughes SH, Felber BK, Whitcomb JM (1995) Production of avian leukosis virus particles in mammalian cells can be mediated by the interaction of the human immunodeficiency virus protein Rev and the Rev-responsive element. Proc Natl Acad Sci USA 92:11940–11944

    Article  PubMed  CAS  Google Scholar 

  • Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7:767–775

    Article  PubMed  CAS  Google Scholar 

  • Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269:6320–6324

    PubMed  CAS  Google Scholar 

  • Owsianka AM, Patel AH (1999) Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257:330–340

    Article  PubMed  CAS  Google Scholar 

  • Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S, Sette C (2009) Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol 185:235–249

    Article  PubMed  CAS  Google Scholar 

  • Perales C, Carrasco L, Gonzalez ME (2005) Regulation of HIV-1 env mRNA translation by Rev protein. Biochim Biophys Acta 1743:169–175

    Article  PubMed  CAS  Google Scholar 

  • Powell DM, Amaral MC, Wu JY, Maniatis T, Greene WC (1997) HIV Rev-dependent binding of SF2/ASF to the Rev response element: possible role in Rev-mediated inhibition of HIV RNA splicing. Proc Natl Acad Sci USA 94:973–978

    Article  PubMed  CAS  Google Scholar 

  • Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67:6365–6378

    PubMed  CAS  Google Scholar 

  • Reddy TR, Xu W, Mau JK, Goodwin CD, Suhasini M, Tang H, Frimpong K, Rose DW, Wong-Staal F (1999) Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med 5:635–642

    Article  PubMed  CAS  Google Scholar 

  • Richard N, Iacampo S, Cochrane A (1994) HIV-1 Rev is capable of shuttling between the nucleus and cytoplasm. Virology 204:123–131

    Article  PubMed  CAS  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241

    Article  PubMed  CAS  Google Scholar 

  • Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D et al (1993) Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123:1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Velar N, Udofia EB, Yu Z, Zapp ML (2004) hRIP, a cellular cofactor for Rev function, promotes release of HIV RNAs from the perinuclear region. Genes Dev 18:23–34

    Article  PubMed  CAS  Google Scholar 

  • Schatz O, Oft M, Dascher C, Schebesta M, Rosorius O, Jaksche H, Dobrovnik M, Bevec D, Hauber J (1998) Interaction of the HIV-1 rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Proc Natl Acad Sci USA 95:1607–1612

    Article  PubMed  CAS  Google Scholar 

  • Schrader R, Young C, Kozian D, Hoffmann R, Lottspeich F (2006) Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J Biol Chem 281:35336–35346

    Article  PubMed  CAS  Google Scholar 

  • Schroder M (2010) Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem Pharmacol 79:297–306

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27:2147–2157

    Article  PubMed  Google Scholar 

  • Sekiguchi T, Iida H, Fukumura J, Nishimoto T (2004) Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. Exp Cell Res 300:213–222

    Article  PubMed  CAS  Google Scholar 

  • Shi XP, Yin KC, Waxman L (1997) Effects of inhibitors of RNA and protein synthesis on the subcellular distribution of the eukaryotic translation initiation factor, eIF-5A, and the HIV-1 Rev protein. Biol Signals 6:143–149

    Article  PubMed  CAS  Google Scholar 

  • Shih JW, Tsai TY, Chao CH, Wu Lee YH (2008) Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27:700–714

    Article  PubMed  CAS  Google Scholar 

  • Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321:412–417

    Article  PubMed  CAS  Google Scholar 

  • Soros VB, Carvajal HV, Richard S, Cochrane AW (2001) Inhibition of human immunodeficiency virus type 1 Rev function by a dominant-negative mutant of Sam68 through sequestration of unspliced RNA at perinuclear bundles. J Virol 75:8203–8215

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Neville M, Rosbash M (1995) Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82:495–506

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kim S, Ryu WS (2009) DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol 83:5815–5824

    Article  PubMed  CAS  Google Scholar 

  • Wodrich H, Krausslich HG (2001) Nucleocytoplasmic RNA transport in retroviral replication. Results Probl Cell Differ 34:197–217

    PubMed  CAS  Google Scholar 

  • Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119:381–392

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Bolinger C, Boris-Lawrie K (2006) Retrovirus translation initiation: issues and hypotheses derived from study of HIV-1. Curr HIV Res 4:131–139

    Article  PubMed  CAS  Google Scholar 

  • You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YH (1999) Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73:2841–2853

    PubMed  CAS  Google Scholar 

  • Yu Z, Sanchez-Velar N, Catrina IE, Kittler EL, Udofia EB, Zapp ML (2005) The cellular HIV-1 Rev cofactor hRIP is required for viral replication. Proc Natl Acad Sci USA 102:4027–4032

    Article  PubMed  CAS  Google Scholar 

  • Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR (2006) eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun 348:1358–1366

    Article  PubMed  CAS  Google Scholar 

  • Zenklusen D, Stutz F (2001) Nuclear export of mRNA. FEBS Lett 498:150–156

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liu Y, Henao J, Rugeles MT, Li J, Chen T, He JJ (2005) Requirement of an additional Sam68 domain for inhibition of human immunodeficiency virus type 1 replication by Sam68 dominant negative mutants lacking the nuclear localization signal. Gene 363:67–76

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Licklider LJ, Gygi SP, Reed R (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419:182–185

    Article  PubMed  CAS  Google Scholar 

  • Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J 17:2914–2925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant R01NS065785 from the National Institutes of Health.

Conflict of interest

The authors declare that they have no competing interests or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingren Zhao or Johnny J. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Henao-Mejia, J., Liu, H. et al. Translational Regulation of HIV-1 Replication by HIV-1 Rev Cellular Cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 6, 308–321 (2011). https://doi.org/10.1007/s11481-011-9265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9265-8

Keywords

Navigation