Skip to main content
Log in

Mechanism of immortalization

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Model systems implementing various approaches to immortalize cells have led toward further understanding of replicative senescence and carcinogenesis. Human diploid cells have a limited life span, termed replicative senescence. Because cells are terminally growth arrested during replicative senescence, it has been suggested that it acts as a tumor suppression mechanism as tumor cells exhibit an indefinite life span and are immortal. The generation of immortal cells lines, by the introduction of SV40 and human papillomavirus (HPV) sequences into cells, has provided invaluable tools to dissect the mechanisms of immortalization. We have developed matched sets of nonimmortal and immortal SV40 cell lines which have been useful in the identification of novel growth suppressor genes (SEN6) as well as providing a model system for the study of processes such as cellular aging, apoptosis, and telomere stabilization. Thus, their continued use is anticipated to lead to insights into other processes, which are effected by the altered expression of oncogenes and growth suppressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayflick, L: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 37: 614–636, 1965.

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein, S: Replicative senescence: The human fibroblast comes of age. Science, 249: 1129–1133, 1990.

    PubMed  CAS  Google Scholar 

  3. Steinberg, ML, and Defendi, V: Altered pattern of growth and differentiation in human keratinocytes infected by SV40. Proc. Natl. Acad. Sci. USA, 76: 801–805, 1979.

    PubMed  CAS  Google Scholar 

  4. Neufeld, DS, Ripley, S, Henderson, A, and Ozer, HL: Immortalization of human fibroblasts transformed by origin-defective SV40. Mol. Cell. Biol., 7: 2794–2802, 1987.

    PubMed  CAS  Google Scholar 

  5. Serrano, M, Lin, AW, McCurrach, ME, Beach, D, and Lowe, SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16. Cell, 88: 593–602, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. West, MD, Pereira-Smith, OM, and Smith, JR: Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp. Cell Res., 184: 138–147, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, E: Senescent human fibroblasts resist programmed cell death and failure to suppress bcl-2 is involved. Cancer Res., 55: 2284–2292, 1995.

    PubMed  CAS  Google Scholar 

  8. Afshari, CA, Bivins, HM, and Barrett, JC: Utilization of a fos-lacZ plasmid to investigate the activation of c-fos during cellular senescence and okadaic acid-induced apoptosis. J. Gerontol., 49: B263–269, 1994.

    PubMed  CAS  Google Scholar 

  9. Shay, JW, and Wright, WE: Quantitation of the frequency of immortalization of normal diploid fibroblasts by SV40 large T-antigen. Exp. Cell. Res., 1874: 109–118, 1989.

    Article  Google Scholar 

  10. Radna, RL, Caton, Y, Jha, KK, Kaplan, P, Li, G, Traganos, F, and Ozer, HL: Growth of immortal simian virus 40 tsA-transformed human fibroblasts is temperature dependent. Mol Cell. Biol., 9: 3093–3096, 1988.

    Google Scholar 

  11. Wright, WE, Pereira-Smith, OM, and Shay, JW: Reversible cellular senescence: A two-stage model for the immortalization of normal diploid fibroblasts. Mol. Cell. Biol., 9: 3088–3092, 1989.

    PubMed  CAS  Google Scholar 

  12. Lin, JY, and Simmons, DJ: The ability of large T-antigen to complex with p53 is necessary for the increased lifespan and partial transformation of human cells by simian virus 40. J. Virol., 65: 6447–6453, 1991.

    PubMed  CAS  Google Scholar 

  13. Weinberg, R: The Rb protein and cell cycle control. Cell, 81: 323–330, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Hubbard-Smith, K, Patsalis, P, Pardinas, JR, Jha, KK, Henderson, AS, and Ozer, HL: Altered chromosome 6 in immortal human fibroblasts. Mol. Cell. Biol., 12: 2, 1992.

    Google Scholar 

  15. Chen, S, Tsao, Y, Chen, Y, Huang, S, Chang J, and Wu, S: The induction of apoptosis by SV40 T antigen correlates with c-jun overexpression. Virology, 244: 521–529, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Lenahan, MK, and Ozer, HL: Induction of c-myc mediated apoptosis in SV40-transformed rat fibroblasts. Oncogene, 12: 1847–1854, 1996.

    PubMed  CAS  Google Scholar 

  17. O’Connor, R, Kauffman-Zeh, A, Liu, Y, Lehar, S, Evan, GI, Baserga, R, and Blattner, WA: Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol., 17: 427–435, 1997.

    PubMed  CAS  Google Scholar 

  18. Pardinas, J, Pang, Z, Houghton, J, Palejwala, V, Donnelly, R, Hubbard K, Small, MB, and Ozer, HL: Differential gene expression in SV40-mediated immortalization of human fibroblasts. J. Cell. Physiol., 171: 325–335, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Allsopp, RC, Vaziri, H, Patterson, C, Goldstein, S, Younglai, EV, Futcher, AB, Grieder CW, and Harley, CB: Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA, 89: 10114–10118, 1992.

  20. Bodnar, AG, Ouellette, M, Frolkis, M, Holt, SE, Chiu, C, Morin, GB, Harley, CB, Shay, JW, Lichtsteiner, S, and Wright, WE: Extension of lifespan by introduction of telomerase into normal human cells. Science, 279: 349–352, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Counter, CC, Hahn, WC, Wei, W, Caddle, SD, Beijersbergen, RL, Landsdorp, PM, Sedivy, JM, and Weinber, RA: Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA, 95: 14723–14728, 1998.

    Google Scholar 

  22. Kiyono, T, Foster, SA, Koop, JI, McDougall, JK, Galloway, DA, and Klingelhutz, AJ: Both Rb/p16INK4a inactivation and telomerase activity are required to immortalizate human epithelial cells. Nature, 396: 84–88, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Small, MB, Hubbard, K, Pardinas J, Marcus, AM, Dhanaraj, SM, and Sethi, KA: Maintenance of telomeres in SV40-transformed preimmortal and immortal human fibroblasts. J. Cellular Phys., 168: 727–736, 1996.

    Article  CAS  Google Scholar 

  24. Brian, TM, Englezou, A, Gupta, J, Bachetti, S, and Reddel, RR: Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J., 14: 4240–4248, 1995.

    Google Scholar 

  25. Blasco, MA, Lee, HW, Hande, MR, Samper, E, Lansdorp, PM, DePinho, RA, and Greider, CW: Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Sedivy, JM: Can ends justify the means? Telomeres and the mechanism of replicative senescence and immortalization in mammalian cells. Proc. Natl. Acad. Sci. USA, 95: 9078–9081, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Berube, NG, Smith, JR, and Pereira-Smith, OM: The genetics of cellular senescence. Am. J. Hum. Genet., 62: 1015–1019, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Sandhu, AK, Hubbard, K, Kaur, GP, Jha, KK, Ozer, HL, and Athwal, RS: Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc. Natl. Acad. Sc. USA, 91: 5498–5502, 1994.

    CAS  Google Scholar 

  29. Banga, SS, Kim, S-H, Hubbard, K, Dasgupta, T, Jha, KK, Patsalis, P, Hauptschein, R, Gamberi, B, Dalla-Favera, R, Kraemer, P, and Ozer, HL: SEN6, a locus for SV40-mediated immortalization of human cells, maps to 6q26–27. Oncogene, 14: 313–321, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Mandai, K, Nakanishi, H, Satoh, A, Obaishi, H, Wada, M, Nishioka, H, Itoh, M, Mizoguchi, A, Aoki, T, Fujimoto, T, Matsuda, Y, Tsukita, S, and Takai, Y: Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol., 139: 517–528, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Hock, B, Bohme, B, Karn, T, Yamamoto, T, Kaibuchi, K, Holtrich, U, Holland, S, Pawson, T, Rubsamen-Waigmann, H, and Strebhardt, K: PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl. Acad. Sci. USA, 95: 9779–9784, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hubbard, K., Ozer, H.L. Mechanism of immortalization. AGE 22, 65–69 (1999). https://doi.org/10.1007/s11357-999-0008-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-999-0008-1

Keywords

Navigation