Skip to main content
Log in

Oxidative stress in older adults: effects of physical fitness

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Acute exercise results in transient change in redox balance. High concentrations of reactive oxygen species (ROS) can lead to oxidative damage to macromolecules. However, moderate periodic increases in ROS, such as experienced with habitual exercise, may activate signal transduction pathways which stimulate increases in endogenous antioxidant systems. This study tested the hypothesis that physically fit older adults would have less oxidative stress than unfit age-matched controls, due to greater circulating concentrations of non-enzymatic antioxidants and greater capacity to upregulate antioxidant enzymes. We compared 37 fit (mean age 65.2 ± 5 years) and 35 unfit (mean age 67.7 ± 4 years) men and women. Fitness status was classified by VO2 max and maximal leg power. Basal levels of oxidative stress were assessed by measuring urinary markers of nucleic acid damage and lipid peroxidation. Antioxidant status was assessed by measuring total antioxidant power and ratios of reduced to oxidized glutathione in plasma, at rest. The capacity to counteract an oxidative insult was assessed by measuring changes in plasma F2-isoprostanes in response to forearm ischemia–reperfusion. The fit individuals had significantly lower levels of urinary markers of oxidative damage (all P <0.05) and lower F2-isoprostane response to the oxidative challenge (P < 0.05), but there were no group differences in antioxidant status. The lower levels of oxidative stress in the fit individuals were not mediated by known effects of exercise training such as adiposity, HDL concentrations, or small molecular weight antioxidants. These data suggest that reduced oxidative stress associated with physical fitness results from differences in activity of antioxidant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AHA (1972) Exercise testing and training of apparently healthy individuals: a handbook for physicians. American Heart Association, Dallas

    Google Scholar 

  • American College of Sports Medicine (2005) Guidelines for exercise testing and prescription. Lea & Febiger, Philadelphia

    Google Scholar 

  • Ashok BT, Ali R (1999) The aging paradox: free radical theory of aging. Exp Gerontol 34:293–303

    Article  PubMed  CAS  Google Scholar 

  • Bean J, Kiely DK et al (2002) The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc 50:461–467

    Article  PubMed  Google Scholar 

  • Blair SN, Kampert JB et al (1996) Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276(3):205–210

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Bode AM et al (1999) Antioxidative mechanisms and plasma growth hormone levels: potential relationship in the aging process. Endocrine 11(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Howard B et al (1999) Elevated oxidative stress in models of normal brain aging and Alzheimer's disease. Life Sci 65(18–19):1883–1892

    Article  PubMed  CAS  Google Scholar 

  • Campbell PT, Gross MD et al (2010) Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc 42(8):1448–1453

    Article  PubMed  CAS  Google Scholar 

  • Choi E-Y, Cho Y-O (2007) The effects of physical training on antioxidative status under exercise-induced oxidative stress. Nutr Res Pract 1:14–18

    Article  PubMed  CAS  Google Scholar 

  • Church TS, Barlow CE et al (2002) Associations between cardiorespiratory fitness and C-reactive protein in men. Arterioscler Thromb Vasc Biol 22(11):1869–1876

    Article  PubMed  CAS  Google Scholar 

  • Cottreau CM, Ness RB et al (2000) Physical activity and reduced risk of ovarian cancer. Obstet Gynecol 96:609–614

    Article  PubMed  CAS  Google Scholar 

  • Covas MI, Elosua R et al (2002) Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc 34(5):814–819

    Article  PubMed  CAS  Google Scholar 

  • Davies SS, Traustadottir T et al (2009) Ischemia–reperfusion unveils impaired capacity of older adults to restrain oxidative insult. Free Radic Biol Med 47:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • de Vos NJ, Singh NA et al (2005) Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci 60A(5):638–647

    Article  Google Scholar 

  • Elosua R, Molina LM et al (2003) Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 167:327–334

    Article  PubMed  CAS  Google Scholar 

  • Falone S, Mirabilio A et al (2010) Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol Res 59:953–961

    PubMed  CAS  Google Scholar 

  • Fatouros IG, Jamurtas AZ et al (2004) Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc 36(12):2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Foldvari M, Clark M et al (2000) Association of muscle power with functional status in community-dwelling elderly women. J Gerontol Med Sci 55A(4):M192–M199

    Article  Google Scholar 

  • Griffith OW (1986) Glutathione and glutathione disulfide. In: Bergmeyer HU, Bergmeyer J, Grabi M (eds) Methods of enzymatic analysis. Verlag Chemie, Deerfield Beach, pp 521–529

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol A Biol Sci Med Sci 11:298–300

    CAS  Google Scholar 

  • Harman SM, Liang L et al (2003) Urinary excretion of three nucleic acid oxidation adducts and isoprostane F2-alpha measured by liquid chromatography–mass spectrometry in smokers, ex-smokers, and nonsmokers. Free Radic Biol Med 35(10):1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Khassaf M, Child RB et al (2001) Time course of responses of human skeletal muscle to oxidative stress induced by damaging exercise. J Appl Physiol 90:1031–1035

    PubMed  CAS  Google Scholar 

  • Knez WL, Jenkins DG et al (2007) Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc 39(2):283–288

    Article  PubMed  CAS  Google Scholar 

  • Kohrt WM, Malley MT et al (1991) Effects of gender, age, and fitness level on response of VO2 max to training in 60–71 yr olds. J Appl Physiol 71:2004–2011

    PubMed  CAS  Google Scholar 

  • Kriska AM (1997) Historical leisure activity questionnaire. Med Sci Sports Exerc 29:S43–S45

    Google Scholar 

  • Kriska AM, Laporte RE et al (1991) The association of physical activity and diabetic complications in individuals with insulin-dependent diabetes mellitus: the epidemiology of diabetes complications study—VII. J Clin Epidemiol 44:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • LaMonte MJ, Blair SN et al (2005) Physical activity and diabetes prevention. J Appl Physiol 99(3):1205–1213

    Article  PubMed  Google Scholar 

  • Lawler JM, Kwak H-B et al (2009) Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol 296:R1496–R1502

    CAS  Google Scholar 

  • Liang Y, Wei P et al (2003) Quantification of 8-iso-prostaglandin-F2à and 2,3-dinor-8-iso-prostaglandin-F2à in human urine using liquid chromatography–tandem mass spectrometry. Free Radic Biol Med 34(4):409–418

    Article  PubMed  CAS  Google Scholar 

  • Linke A, Adams V et al (2005) Antioxidative effects of exercise training in patients with chronic heart failure. Circulation 111:1763–1770

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes J, Ferreira R et al (2007) Indoor climbing elicits plasma oxidative stress. Med Sci Sports Exerc 39(6):955–963

    Article  PubMed  CAS  Google Scholar 

  • Marzatico F, Pansarasa O et al (1997) Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness 37:235–239

    PubMed  CAS  Google Scholar 

  • Miyazaki H, Oh-ishi S et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Phys 84:1–6

    Article  CAS  Google Scholar 

  • Morrow JD, Roberts LJ 2nd (1999) Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 300:3–12

    Article  PubMed  CAS  Google Scholar 

  • Nelson ME, Rejeski WJ et al (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1435–1445

    Article  PubMed  Google Scholar 

  • Nikolaidis MG, Paschalis V et al (2007) Decreased blood oxidative stress after repeated muscle damaging exercise. Med Sci Sports Exerc 39(7):1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Nojima H, Watanabe H et al (2008) Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metab Clin Exp 57(2):170–176

    Article  PubMed  CAS  Google Scholar 

  • Ookawara T, Haga S et al (2003) Effects of endurance training on three superoxide dismutase isoenzymes in human plasma. Free Radic Res 37(7):713–719

    Article  PubMed  CAS  Google Scholar 

  • Paffenbarger RS, Hyde RT et al (1993) The association of changes in physical activity level and other lifestyle characteristics with mortality among men. N Engl J Med 328:538–545

    Article  PubMed  Google Scholar 

  • Pittaluga M, Parisi P et al (2006) Cellular and biochemical parameters of exercise-induced oxidative stress: relationship with training levels. Free Radic Res 40(6):607–614

    Article  PubMed  CAS  Google Scholar 

  • Poulsen HE, Prieme H et al (1998) Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7(1):9–16

    PubMed  CAS  Google Scholar 

  • Powers SK, Demirel HA et al (1998) Exercise training improves myocardial tolerance to in vivo ischemia–reperfusion in the rat. Am J Physiol 275(5):R1468–R1477

    PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY et al (2004) Age-associated increases in oxidative stress and nuclear transcription factor k B activation are attenuated in rat liver by regular exercise. FASEB J 18(6):749–750

    PubMed  CAS  Google Scholar 

  • Radak Z, Chung HY et al (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6:71–75

    Article  PubMed  CAS  Google Scholar 

  • Rosa EF, Silva AC et al (2005) Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol 99(4):1569–1575

    Article  PubMed  Google Scholar 

  • Rousseau AS, Margaritis I et al (2006) Physical activity alters antioxidant status in exercising elderly subjects. J Nutr Biochem 17(7):463–470

    Article  PubMed  CAS  Google Scholar 

  • Sacheck JM, Milbury PE et al (2003) Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 34(12):1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Santos-Silva A, Rebelo MI et al (2001) Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clin Chim Acta 306:119–126

    Article  PubMed  CAS  Google Scholar 

  • Simar D, Malatesta D et al (2007) Physical activity modulates heat shock protein-72 expression and limits oxidative damage accumulation in a healthy elderly population aged 60–90 years. J Gerontol Med Sci 62A(12):1413–1419

    Article  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63

    Article  PubMed  CAS  Google Scholar 

  • Spector A (2000) Review: oxidative stress and disease. J Ocul Pharmacol Ther 16:193–201

    Article  PubMed  CAS  Google Scholar 

  • Spina RJ, Rashid S et al (2000) Adaptations in beta-adrenergic cardiovascular responses to training in older women. J Appl Physiol 89(6):2300–2305

    PubMed  CAS  Google Scholar 

  • Starnes JW, Taylor RP et al (2003) Exercise improves postischemic function in aging hearts. Am J Physiol Heart Circ Physiol 285(1):H347–H351

    PubMed  CAS  Google Scholar 

  • Stathokostas L, Jacob-Johnson S et al (2004) Longitudinal changes in aerobic power in older men and women. J Appl Physiol 97(2):781–789

    Article  PubMed  Google Scholar 

  • Stoner GD, Wang L-S et al (2008) Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29(9):1665–1674

    Article  PubMed  CAS  Google Scholar 

  • Traustadóttir T, Bosch PR et al (2004) Hypothalamic–pituitary–adrenal axis response and recovery from high-intensity exercise in women: effects of aging and fitness. J Clin Endocrinol Metab 89(7):3248–3254

    Article  PubMed  Google Scholar 

  • Traustadóttir T, Stock AA et al (2008) High-dose statin use does not impair aerobic capacity or skeletal muscle function in older adults. Age 30(4):283–291

    Article  PubMed  Google Scholar 

  • Traustadóttir T, Davies SS et al (2009) Tart cherry juice decreases oxidative stress in healthy older men and women. J Nutr 139:1896–1900

    Article  PubMed  Google Scholar 

  • Vincent HK, Bourguignon C et al (2006) Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity (Silver Spring) 14(11):1921–1930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Panayiotis Tsitouras, the KLRI clinical staff, Pat Levin, and Jane Heilman for their invaluable help in the administration and data collection of this study. We also thank our study volunteers for their willingness to participate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinna Traustadóttir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Baseline plasma F2-isoprostane levels by maximal oxygen consumption. The solid line is the overall group mean and the dotted line is 2 SDs above the mean. The five individuals above the dotted line were considered outliers and were excluded from main analyses. (DOC 58 kb)

Supplemental Figure 2

a Plasma F2-isoprostane responses to the forearm I/R contrasting the individual responses of the five outliers to the group means (without the outliers). The outliers had higher F2-isoprostane levels across all the sampling points. b The mean response in both groups with the outliers included. The pattern of response is the same as without the outliers included but the variance is increased. (DOC 88 kb)

Supplemental Table 1

(DOC 25 kb)

About this article

Cite this article

Traustadóttir, T., Davies, S.S., Su, Y. et al. Oxidative stress in older adults: effects of physical fitness. AGE 34, 969–982 (2012). https://doi.org/10.1007/s11357-011-9277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9277-6

Keywords

Navigation