Skip to main content

Advertisement

Log in

Age-related atrial fibrosis

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Many age-related diseases are associated with, and may be promoted by, cardiac fibrosis. Transforming growth factor (TGF)-β, hypoxia-induced factor (HIF), and the matrix metalloproteinase (MMP) system have been implicated in fibrogenesis. Thus, we investigated whether age is related to these systems and to atrial fibrosis. Right atrial appendages (RAA) obtained during heart surgery (n = 115) were grouped according to patients’ age (<50 years, 51–60 years, 61–70 years, or >70 years). Echocardiographic ejection fractions (EF) and fibrosis using Sirius-red-stained histological sections were determined. TGF-β was determined by quantitative RT-PCR and hypoxia-related factors [HIF1α, the vascular endothelial growth factor (VEGF)-receptor, CD34 (a surrogate marker for microvessel density), the factor inhibiting HIF (FIH), and prolyl hydroxylase 3 (PHD 3)] were detected by immunostaining. MMP-2 and -9 activity were determined zymographically, and mRNA levels of their common tissue inhibitor TIMP-1 were determined by RT-PCR. Younger patients (<50 years) had significantly less fibrosis (10.1% ± 4.4% vs 16.6% ± 8.3%) than older individuals (>70 years). While HIF1α, FIH, the VEGF-receptor, and CD34 were significantly elevated in the young, TGF-β and PHD3 were suppressed in these patients. MMP-2 and -9 activity was found to be higher while TIMP-1 levels were lower in older patients. Statistical analysis proved age to be the only factor influencing fibrogenesis. With increasing age, RAAs develop significantly more fibrosis. An increase of fibrotic and decrease of hypoxic signalling and microvessel density, coupled with differential expression of MMPs and TIMP-1 favouring fibrosis may have helped promote atrial fibrogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

CABG:

Coronary artery bypass graft

EF:

Ejection fraction

FIH:

Factor inhibiting HIF

HIF:

Hypoxia induced factor

HRE:

Hypoxia response elements

IHC:

Immunohistochemistry

KDR:

Kinase insert-domain containing receptor (= VEGF-receptor)

LA:

Left atrium

LV:

Left ventricle

MMP:

Matrix-metalloproteinases

MVD:

Microvessel density

PHD3:

Prolyl hydroxylases 3

RA:

Right atrium

RAA:

Right atrial appendage

RV:

Right ventricle

TGF-β:

Transforming growth factor-β

TIMP:

Tissue inhibitors of metalloproteinases

VEGF:

Vascular endothelial growth factor

References

  • Anne W, Willems R, Roskams T et al (2005) Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation. Cardiovasc Res 67(4):655–666 doi:10.1016/j.cardiores.2005.04.016

    Article  PubMed  CAS  Google Scholar 

  • Annoni G, Luvara G, Arosio B et al (1998) Age-dependent expression of fibrosis-related genes and collagen deposition in the rat myocardium. Mech Ageing Dev 101(1–2):57–72 doi:10.1016/S0047-6374(97)00165-6

    Article  PubMed  CAS  Google Scholar 

  • Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54(4):343–349 doi:10.1016/S0895-4356(00)00314-0

    Article  PubMed  CAS  Google Scholar 

  • Boixel C, Fontaine V, Rucker-Martin C et al (2003) Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol 42(2):336–344 doi:10.1016/S0735-1097(03)00578-3

    Article  PubMed  CAS  Google Scholar 

  • Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40(7):2037–2041

    PubMed  CAS  Google Scholar 

  • Brilla CG (2000a) Aldosterone and myocardial fibrosis in heart failure. Herz 25(3):299–306 doi:10.1007/s000590050024

    Article  PubMed  CAS  Google Scholar 

  • Brilla CG (2000b) Regression of myocardial fibrosis in hypertensive heart disease: diverse effects of various antihypertensive drugs. Cardiovasc Res 46(2):324–331 doi:10.1016/S0008-6363(99)00432-0

    Article  PubMed  CAS  Google Scholar 

  • Brooks WW, Conrad CH (2000) Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol 32(2):187–195 doi:10.1006/jmcc.1999.1065

    Article  PubMed  CAS  Google Scholar 

  • Burkauskiene A (2005) Age-related changes in the structure of myocardial collagen network of auricle of the right atrium in healthy persons and ischemic heart disease patients. Medicina (Kaunas) 41(2):145–154

    Google Scholar 

  • Cataldi A, Bianchi G, Rapino C et al (2004) Molecular and morphological modifications occurring in rat heart exposed to intermittent hypoxia: role for protein kinase C alpha. Exp Gerontol 39(3):395–405 doi:10.1016/j.exger.2003.11.010

    Article  PubMed  CAS  Google Scholar 

  • Cioffi CL, Liu XQ, Kosinski PA et al (2003) Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun 303(3):947–953 doi:10.1016/S0006-291X(03)00453-4

    Article  PubMed  CAS  Google Scholar 

  • De Boer RA, Pinto YM, Van Veldhuisen DJ (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10(2):113–126 doi:10.1080/713773607

    Article  PubMed  Google Scholar 

  • Eghbali M, Robinson TF, Seifter S et al (1989) Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 23(8):723–729 doi:10.1093/cvr/23.8.723

    Article  PubMed  CAS  Google Scholar 

  • Epstein ND, Davis JS (2003) Sensing stretch is fundamental. Cell 112(2):147–150 doi:10.1016/S0092-8674(03)00037-0

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676 doi:10.1038/nm0603-669

    Article  PubMed  CAS  Google Scholar 

  • Frenkel-Denkberg G, Gershon D, Levy AP (1999) The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 462(3):341–344 doi:10.1016/S0014-5793(99)01552-5

    Article  PubMed  CAS  Google Scholar 

  • Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R (2001) Age related changes of the collagen network of the human heart. Mech Ageing Dev 122(10):1049–1058 doi:10.1016/S0047-6374(01)00238-X

    Article  PubMed  CAS  Google Scholar 

  • Goette A, Arndt M, Rocken C et al (2000) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101(23):2678–2681

    PubMed  CAS  Google Scholar 

  • Goette A, Juenemann G, Peters B et al (2002) Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc Res 54(2):390–396 doi:10.1016/S0008-6363(02)00251-1

    Article  PubMed  CAS  Google Scholar 

  • Gramley F, Lorenzen J, Plisiene J et al (2007) Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J Cardiovasc Electrophysiol 18(10):1076–1082 doi:10.1111/j.1540-8167.2007.00906.x

    Article  PubMed  Google Scholar 

  • Hao J, Ju H, Zhao S et al (1999) Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31(3):667–678 doi:10.1006/jmcc.1998.0902

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47 doi:10.1038/nrc704

    Article  PubMed  CAS  Google Scholar 

  • Henry WL, Morganroth J, Pearlman AS et al (1976) Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53(2):273–279

    PubMed  CAS  Google Scholar 

  • Ho K, Pinsky J, Kannel W et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:6A–13A

    Article  PubMed  CAS  Google Scholar 

  • Hoit BD, Takeishi Y, Cox MJ et al (2002) Remodeling of the left atrium in pacing-induced atrial cardiomyopathy. Mol Cell Biochem 238(1–2):145–150 doi:10.1023/A:1019988024077

    Article  PubMed  CAS  Google Scholar 

  • Inaba Y, Yuda S, Kobayashi N et al (2005) Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr 18(7):729–736 doi:10.1016/j.echo.2004.12.005

    Article  PubMed  Google Scholar 

  • Kannel W, Abbot R, Savage D et al (1982) Epidemiological features of atrial fibrillation. The Framingham study. N Engl J Med 306:1018–1022

    PubMed  CAS  Google Scholar 

  • Kannel WB, Wolf PA, Benjamin EJ et al (1998) Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 82(8A):2N–9N doi:10.1016/S0002-9149(98)00583-9

    Article  PubMed  CAS  Google Scholar 

  • Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24 doi:10.1111/j.1365-2567.2006.02336.x

    Article  PubMed  CAS  Google Scholar 

  • Knackstedt C, Gramley F, Schimpf T et al (2008) Association of echocardiographic atrial size and atrial fibrosis in a sequential model of congestive heart failure and atrial fibrillation. Cardiovasc Pathol 17(5):318–324

    Google Scholar 

  • Kokubu N, Yuda S, Tsuchihashi K et al (2007) Noninvasive assessment of left atrial function by strain rate imaging in patients with hypertension: a possible beneficial effect of renin-angiotensin system inhibition on left atrial function. Hypertens Res 30(1):13–21 doi:10.1291/hypres.30.13

    Article  PubMed  Google Scholar 

  • Li J, Hampton T, Morgan JP et al (1997) Stretch-induced VEGF expression in the heart. J Clin Invest 100(1):18–24 doi:10.1172/JCI119510

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ma C, Dong J et al (2008) The fibrosis and atrial fibrillation: is the transforming growth factor-beta(1) a candidate etiology of atrial fibrillation. Med Hypotheses 70(2):317–319 doi:10.1016/j.mehy.2007.04.046

    Article  PubMed  CAS  Google Scholar 

  • Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71(1–2):418–435 doi:10.1006/mgme.2000.3032

    Article  PubMed  CAS  Google Scholar 

  • Medugorac I (1980) Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc Res 14(9):551–554 doi:10.1093/cvr/14.9.551

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee R, Herron AR, Lowry AS et al (2006) Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol 97(4):532–537 doi:10.1016/j.amjcard.2005.08.073

    Article  PubMed  CAS  Google Scholar 

  • Nakai T, Chandy J, Nakai K et al (2007) Histologic assessment of right atrial appendage myocardium in patients with atrial fibrillation after coronary artery bypass graft surgery. Cardiology 108(2):90–96 doi:10.1159/000095936

    Article  PubMed  Google Scholar 

  • Nakajima H, Nakajima HO, Salcher O et al (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86(5):571–579

    PubMed  CAS  Google Scholar 

  • O’Brien DW, Fu Y, Parker HR et al (2000) Differential morphometric and ultrastructural remodelling in the left atrium and left ventricle in rapid ventricular pacing-induced heart failure. Can J Cardiol 16(11):1411–1419

    PubMed  Google Scholar 

  • Ohtani K, Yutani C, Nagata S et al (1995) High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol 25(5):1162–1169 doi:10.1016/0735-1097(94)00529-Y

    Article  PubMed  CAS  Google Scholar 

  • Olivetti G, Melissari M, Capasso JM et al (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568

    PubMed  CAS  Google Scholar 

  • Pelouch V, Kolar F, Ost’adal B et al (1997) Regression of chronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril. Cardiovasc Drugs Ther 11(2):177–185 doi:10.1023/A:1007788915732

    Article  PubMed  CAS  Google Scholar 

  • Rivard A, Fabre JE, Silver M et al (1999) Age-dependent impairment of angiogenesis. Circulation 99(1):111–120

    PubMed  CAS  Google Scholar 

  • Rivard A, Berthou-Soulie L, Principe N et al (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275(38):29643–29647 doi:10.1074/jbc.M001029200

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Besse S, Sabri A et al (1997) Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest 76(5):729–738

    PubMed  CAS  Google Scholar 

  • Robinson TF, Cohen-Gould L, Factor SM (1983) Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest 49(4):482–498

    PubMed  CAS  Google Scholar 

  • Rohrbach S, Simm A, Pregla R et al (2005) Age-dependent increase of prolyl-4-hydroxylase domain (PHD) 3 expression in human and mouse heart. Biogerontology 6(3):165–171 doi:10.1007/s10522-005-7950-9

    Article  PubMed  CAS  Google Scholar 

  • Sanfilippo AJ, Abascal VM, Sheehan M et al (1990) Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82(3):792–797

    PubMed  CAS  Google Scholar 

  • Schotten U, Neuberger HR, Allessie MA (2003) The role of atrial dilatation in the domestication of atrial fibrillation. Prog Biophys Mol Biol 82(1–3):151–162 doi:10.1016/S0079-6107(03)00012-9

    Article  PubMed  Google Scholar 

  • Seeland U, Haeuseler C, Hinrichs R et al (2002) Myocardial fibrosis in transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest 32(5):295–303 doi:10.1046/j.1365-2362.2002.00985.x

    Article  PubMed  CAS  Google Scholar 

  • Sivasubramanian N, Coker ML, Kurrelmeyer KM et al (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104(7):826–831 doi:10.1161/hc3401.093154

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Wang JG, Thijs L et al (1999) Overview of the outcome trials in older patients with isolated systolic hypertension. J Hum Hypertens 13(12):859–863 doi:10.1038/sj.jhh.1000899

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kato H, Kojima I et al (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61(8):795–805

    PubMed  Google Scholar 

  • Thijssen VL, van der Velden HM, van Ankeren EP et al (2002) Analysis of altered gene expression during sustained atrial fibrillation in the goat. Cardiovasc Res 54(2):427–437 doi:10.1016/S0008-6363(02)00260-2

    Article  PubMed  CAS  Google Scholar 

  • Vermes E, Tardif JC, Bourassa MG et al (2003) Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) trials. Circulation 107(23):2926–2931 doi:10.1161/01.CIR.0000072793.81076.D4

    Article  PubMed  Google Scholar 

  • Wang B, Hao J, Jones SC et al (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282(5):H1685–H1696

    PubMed  CAS  Google Scholar 

  • White CW, Kerber RE, Weiss HR et al (1982) The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res 51(2):205–215

    PubMed  CAS  Google Scholar 

  • Xu J, Cui G, Esmailian F et al (2004) Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109(3):363–368 doi:10.1161/01.CIR.0000109495.02213.52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Gramley.

Additional information

No author has any conflicts of interest to disclose.

About this article

Cite this article

Gramley, F., Lorenzen, J., Knackstedt, C. et al. Age-related atrial fibrosis. AGE 31, 27–38 (2009). https://doi.org/10.1007/s11357-008-9077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-008-9077-9

Keywords

Navigation