Skip to main content
Log in

Research trends and hotspots related to ammonia oxidation based on bibliometric analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ammonia oxidation is the rate-limiting and central step in global biogeochemistry cycle of nitrogen. A bibliometric analysis based on 4314 articles extracted from Science Citation Index Expanded database was carried out to provide insights into publication performances and research trends of ammonia oxidation in the period 1991–2014. These articles were originated from a wide range of 602 journals and 95 Web of Science Categories, among which Applied and Environmental Microbiology and Environmental Sciences took the leading position, respectively. Furthermore, co-citation analysis conducted with help of CiteSpace software clearly illustrated that ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and anaerobic ammonia oxidation (anammox) were three dominant research themes. A total of 15 landmark works identified with the highest co-citation frequencies at every 8 years were extracted, which demonstrated that the establishments of culture-independent molecular biotechnologies as well as the discoveries of anammox and AOA played the most significant roles in promoting the evolution and development of ammonia oxidation research. Finally, word cluster analysis further suggested that microbial abundance and community of AOA and AOB was the most prominent hotspot, with soil and high-throughput sequencing as the most promising ecosystem and molecular biotechnology. In addition, application of anammox in nitrogen removal from wastewater has become another attractive research hotspot. This study provides a basis for better understanding the situations and prospective directions of the research field of ammonia oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appio FP, Martini A, Massa S, Testa S (2016) Unveiling the intellectual origins of social media-based innovation: insights from a bibliometric approach. Scientometrics 108(1):1–34

    Article  Google Scholar 

  • Bagchi S, Biswas R, Nandy T (2012) Autotrophic ammonia removal processes: ecology to technology. Crit Rev Environ Sci Technol 42(13):1353–1418

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  Google Scholar 

  • Chiu WT, Ho YS (2005) Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics 63(1):3–23

    Article  Google Scholar 

  • Chuang KY, Ho YS (2014) Bibliometric profile of top-cited single-author articles in the science citation index Expanded. J Informetrics 8(4):951–962

    Article  Google Scholar 

  • Falagas ME, Karavasiou AI, Bliziotis IA (2006) A bibliometric analysis of global trends of research productivity in tropical medicine. Acta Trop 99(3):155–159

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102(41):14683–14688

    Article  CAS  Google Scholar 

  • Fu HZ, Wang MH, Ho YS (2012) The most frequently cited adsorption research articles in the science citation index (Expanded). J Colloid Interface Sci 379(1):148–156

    Article  CAS  Google Scholar 

  • Fu HZ, Wang MH, Ho YS (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992–2011. Sci Total Environ 443:757–765

  • Gao JF, Luo X, Wu GX, Li T, Peng YZ (2013) Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresour Technol 138:285–296

    Article  CAS  Google Scholar 

  • Garfield E (1990) KeyWords Plus: ISI’s breakthrough retrieval method. Part 1. Expanding your searching power on current contents on diskette. Curr Contents 32:5–9

    Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105(6):2134–2139

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374

    Article  CAS  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    Article  CAS  Google Scholar 

  • Ho YS, Satoh H, Lin SY (2010) Japanese lung cancer research trends and performance in science citation index. Intern Med 49(20):2219–2228

    Article  Google Scholar 

  • Ho YS (2012) Top-cited articles in chemical engineering in science citation index Expanded: a bibliometric analysis. Chin J Chem Eng 20(3):478–488

    Article  CAS  Google Scholar 

  • Ibrahim M, Yusof N, Yusoff MZM, Hassan MA (2016) Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review. Desalin Water Treat 57:13958–13978

    Article  CAS  Google Scholar 

  • Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 85(3):425–440

    Article  CAS  Google Scholar 

  • Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT (2013) How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 37:428–461

    Article  CAS  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058):543–546

    Article  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326

    Article  CAS  Google Scholar 

  • Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3(1):317–345

    Article  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences of the United States of America, 104, 7104-7109

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809

    Article  CAS  Google Scholar 

  • Li JF, Wang MH, Ho YS (2011) Trends in research on global climate change: a science citation index Expanded-based analysis. Glob Planet Chang 77(1–2):13–20

    Article  Google Scholar 

  • Li L, Hu J, Ho YS (2014) Global performance and trend of QSAR/QSPR research: a bibliometric analysis. Molecular Informatics 33(10):655–668

    Article  CAS  Google Scholar 

  • Li Z, Ho YS (2008) Use of citation per publication as an indicator to evaluate contingent valuation research. Scientometrics 75(1):97–110

    Article  Google Scholar 

  • Lin CL, Ho YS (2015) A bibliometric analysis of publications on pluripotent stem cell research. Cell J 17(1):59–70

    Google Scholar 

  • Mao N, Wang MH, Ho YS (2010) A bibliometric study of the trend in articles related to risk assessment published in science citation index. Hum Ecol Risk Assess 16(4):801–824

    Article  CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461(7266):976–979

    Article  CAS  Google Scholar 

  • Mesdaghinia A, Younesian M, Nasseri S, Nodehi RN, Hadi M (2015) Analysis of the microbial risk assessment studies from 1973 to 2015: a bibliometric case study. Scientometrics 105(1):691–707

    Article  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62(6):2156–2162

    CAS  Google Scholar 

  • Monteiro M, Seneca J, Magalhaes C (2014) The history of aerobic ammonia oxidizers: from the first discoveries to today. J Microbiol 52(7):537–547

    Article  CAS  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–183

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  Google Scholar 

  • National Bureau of Statistics (NBS) and Ministry of Science and Technology (MST) (2015) China statistical yearbook on science and technology 2015. China Statistics Press, Beijing

    Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environment Microbiology 10(11):2966–2978

    Article  CAS  Google Scholar 

  • Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50(2):189–203

    Article  CAS  Google Scholar 

  • Niu L, Li Y, Wang P, Zhang W, Wang C, Cai W, Wang L (2016) Altitude-scale variation in nitrogen-removal bacterial communities from municipal wastewater treatment plants distributed along a 3600-m altitudinal gradient in China. Sci Total Environ 559:38–44

    Article  CAS  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environment Microbiology 14(2):525–539

    Article  CAS  Google Scholar 

  • Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30(9):475–484

    Article  CAS  Google Scholar 

  • Pilkington A, Meredith J (2009) The evolution of the intellectual structure of operations management—1980-2006: a citation/cocitation analysis. J Oper Manag 27(3):185–202

    Article  Google Scholar 

  • Pritchard A (1969) Statistical bibliography or bibliometrics. J Doc 25:348–349

    Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  CAS  Google Scholar 

  • Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10(11):3130–3139

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    CAS  Google Scholar 

  • Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333:1282–1125

    Article  CAS  Google Scholar 

  • Shen JP, Xu Z, He JZ (2014) Frontiers in the microbial processes of ammonia oxidation in soils and sediments. J Soils Sediments 14(6):1023–1029

    Article  CAS  Google Scholar 

  • Small H (1973) Co-citation in the scientific literature: a new measure of the relationship between two documents. J Am Soc Inf Sci Technol 24(4):5

    Google Scholar 

  • Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Radiat Isot 50(5):589–596

    CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  Google Scholar 

  • Third KA, Sliekers AO, Kuenen JG, Jettenr MSM (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24(4):588–596

    Article  CAS  Google Scholar 

  • Reuters T (2014) Research Fronts 2014: 100 Top Ranked Specialties in the Sciences and Social Sciences http://sciencewatch.com/sites/sw/files/sw-article/media/research-fronts-2014.pdf. Accessed 15 August 2016

  • van de Graaf AA, de Bruin P, Robertson LA, Jetten MSM, Kuenen JG (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:2415–2421

  • Wang Q, Yang Z, Yang Z, Long C, Li H (2014) A bibliometric analysis of research on the risk of engineering nanomaterials during 1999-2012. Sci Total Environ 473-474:483–489

    Article  CAS  Google Scholar 

  • Winogradsky S (1890) Recherches sur les organismes de la nitrification. Annales de L'Institut Pasteur 4:213–231

    Google Scholar 

  • Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17:135

    Article  Google Scholar 

  • Zhang GF, Xie SD, Ho YS (2010) A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 83(2):477–492

    Article  CAS  Google Scholar 

  • Zheng M, Tian Y, Liu T, Ma T, Li L, Li C, Ahmad M, Chen Q, Ni J (2015) Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation. Bioresour Technol 179:510–517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Maosheng Zheng would like to thank the financial support by the Fundamental Research Funds for the Central Universities 2016MS84.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Shan Ho.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 138 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Fu, HZ. & Ho, YS. Research trends and hotspots related to ammonia oxidation based on bibliometric analysis. Environ Sci Pollut Res 24, 20409–20421 (2017). https://doi.org/10.1007/s11356-017-9711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9711-0

Keywords

Navigation