Skip to main content

Advertisement

Log in

Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208. doi:10.1007/s12035-009-8063-2

    PubMed  CAS  Google Scholar 

  2. Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36(9):1127–1139

    PubMed  CAS  Google Scholar 

  3. North RA (1996) P2X receptors: a third major class of ligand-gated ion channels. Ciba Found Symp 198:91–105, discussion 105–109

    PubMed  CAS  Google Scholar 

  4. Burnstock G, Campbell G, Satchell D, Smythe A (1997) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. 1970. Br J Pharmacol 120(4 Suppl):337–357, discussion 334–336

    PubMed  CAS  Google Scholar 

  5. Burnstock G (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126(1):67–91

    PubMed  CAS  Google Scholar 

  6. Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68(8):1369–1394. doi:10.1007/s00018-010-0614-1

    PubMed  CAS  Google Scholar 

  7. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisen J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353. doi:10.1038/nn1405

    PubMed  CAS  Google Scholar 

  8. Hofer M, Vacek A, Pospisil M, Weiterova L, Hola J, Streitova D, Znojil V (2006) Adenosine potentiates stimulatory effects on granulocyte-macrophage hematopoietic progenitor cells in vitro of IL-3 and SCF, but not those of G-CSF, GM-CSF and IL-11. Physiol Res 55(5):591–596

    PubMed  CAS  Google Scholar 

  9. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52(1–2):44–56. doi:10.1002/ddr.1097

    CAS  Google Scholar 

  10. Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med 10:9–52. doi:10.1186/1741-7015-9-52

    Google Scholar 

  11. Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 17(30):9. doi:10.1186/1756-9966-30-9

    Google Scholar 

  12. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    PubMed  CAS  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  14. Pelacho B, Mazo M, Gavira JJ, Prosper F (2011) Adult stem cells: from new cell sources to changes in methodology. J Cardiovasc Transl Res 4(2):154–160. doi:10.1007/s12265-010-9245-z

    PubMed  Google Scholar 

  15. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    PubMed  CAS  Google Scholar 

  16. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    PubMed  CAS  Google Scholar 

  17. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465(7299):704–712. doi:10.1038/nature09229

    PubMed  CAS  Google Scholar 

  18. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329. doi:10.1038/nature07040

    PubMed  CAS  Google Scholar 

  19. Dambrot C, Passier R, Atsma D, Mummery CL (2011) Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J 434(1):25–35. doi:10.1042/BJ20101707

    PubMed  CAS  Google Scholar 

  20. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669

    PubMed  CAS  Google Scholar 

  21. Laflamme MA, Myerson D, Saffitz JE (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–640

    PubMed  CAS  Google Scholar 

  22. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421

    PubMed  CAS  Google Scholar 

  23. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532. doi:10.1038/nature04886

    PubMed  CAS  Google Scholar 

  24. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11(3):201–212. doi:10.1038/nri2938

    PubMed  CAS  Google Scholar 

  25. Di Virgilio F, Falzoni S, Mutini C, Sanz JM, Chiozzi P (1998) Purinergic P2X7 receptor: a pivotal role in inflammation and immunomodulation. Drug Dev Res 45(3–4):doi:10.1002/(SICI)1098-2299(199811/12)45:3/4<207::AID-DDR18>3.0.CO;2-N

    Google Scholar 

  26. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. doi:10.1146/annurev.physiol.70.113006.100630

    PubMed  CAS  Google Scholar 

  27. Carroll WA, Donnelly-Roberts D, Jarvis MF (2009) Selective P2X(7) receptor antagonists for chronic inflammation and pain. Purinergic Signal 5(1):63–73. doi:10.1007/s11302-008-9110-6

    PubMed  CAS  Google Scholar 

  28. Sak K, Boeynaems JM, Everaus H (2003) Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 73(4):442–447

    PubMed  CAS  Google Scholar 

  29. Casati A, Frascoli M, Traggiai E, Proietti M, Schenk U, Grassi F (2011) Cell-autonomous regulation of hematopoietic stem cell cycling activity by ATP. Cell Death Differ 18(3):396–404. doi:10.1038/cdd.2010.107

    PubMed  CAS  Google Scholar 

  30. Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, Forchap S, Chiozzi P, Vaselli D, Bertolini F, Foutz T, Aluigi M, Baccarani M, Di Virgilio F (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104(6):1662–1670. doi:10.1182/blood-2004-03-08342004-03-0834

    PubMed  CAS  Google Scholar 

  31. Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R, Salati S, Salvestrini V, Gulinelli S, Adinolfi E, Ferrari S, Di Virgilio F, Baccarani M, Lemoli RM (2007) The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 109(2):533–542. doi:10.1182/blood-2006-01-035634

    PubMed  CAS  Google Scholar 

  32. Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B, Bosi A, Saccardi R, Pedata F (2007) ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 25(7):1840–1849

    PubMed  CAS  Google Scholar 

  33. Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109(3):846–857

    PubMed  CAS  Google Scholar 

  34. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. doi:10.1007/s11302-006-9003-5

    PubMed  CAS  Google Scholar 

  35. Shukla V, Zimmermann H, Wang L, Kettenmann H, Raab S, Hammer K, Sevigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80(5):600–610. doi:10.1002/jnr.20508

    PubMed  CAS  Google Scholar 

  36. Braun N, Sevigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17(7):1355–1364

    PubMed  Google Scholar 

  37. Mishra SK, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sevigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684. doi:10.1242/dev.02233

    PubMed  CAS  Google Scholar 

  38. Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485(3):208–211. doi:10.1016/j.neulet.2010.09.013

    PubMed  CAS  Google Scholar 

  39. Langer D, Ikehara Y, Takebayashi H, Hawkes R, Zimmermann H (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience 150(4):863–879. doi:10.1016/j.neuroscience.2007.07.064

    PubMed  CAS  Google Scholar 

  40. Lin JH, Takano T, Arcuino G, Wang X, Hu F, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302(1):356–366. doi:10.1016/j.ydbio.2006.09.017

    PubMed  CAS  Google Scholar 

  41. Resende RR, Britto LR, Ulrich H (2008) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 26(7):763–777. doi:10.1016/j.ijdevneu.2008.07.008

    PubMed  CAS  Google Scholar 

  42. Xie X, Sun A, Huang Z, Zhu W, Wang S, Zou Y, Ge J (2011) Another possible cell source for cardiac regenerative medicine: reprogramming adult fibroblasts to cardiomyocytes and endothelial progenitor cells. Med Hypotheses 76(3):365–367. doi:10.1016/j.mehy.2010.10.041

    PubMed  Google Scholar 

  43. Martinez EC, Kofidis T (2011) Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol 50(2):312–319. doi:10.1016/j.yjmcc.2010.08.009

    PubMed  CAS  Google Scholar 

  44. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    PubMed  CAS  Google Scholar 

  45. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M, Platoshyn O, Yuan JX, Evans S, Chien KR (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653. doi:10.1038/nature03215

    PubMed  CAS  Google Scholar 

  46. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    PubMed  CAS  Google Scholar 

  47. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318. doi:10.1073/pnas.21321261002132126100

    PubMed  CAS  Google Scholar 

  48. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974. doi:10.1038/nm1618

    PubMed  CAS  Google Scholar 

  49. Lee BC, Cheng T, Adams GB, Attar EC, Miura N, Lee SB, Saito Y, Olszak I, Dombkowski D, Olson DP, Hancock J, Choi PS, Haber DA, Luster AD, Scadden DT (2003) P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev 17(13):1592–1604. doi:10.1101/gad.107150317/13/1592

    PubMed  CAS  Google Scholar 

  50. Headrick JP, Hack B, Ashton KJ (2003) Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 285(5):H1797–H1818. doi:10.1152/ajpheart.00407.2003285/5/H1797

    PubMed  CAS  Google Scholar 

  51. Jordan JE, Zhao ZQ, Sato H, Taft S, Vinten-Johansen J (1997) Adenosine A2 receptor activation attenuates reperfusion injury by inhibiting neutrophil accumulation, superoxide generation and coronary endothelial adherence. J Pharmacol Exp Ther 280(1):301–309

    PubMed  CAS  Google Scholar 

  52. Zhao ZQ, Todd JC, Sato H, Ma XL, Vinten-Johansen J (1997) Adenosine inhibition of neutrophil damage during reperfusion does not involve K(ATP)-channel activation. Am J Physiol 273(4 Pt 2):H1677–H1687

    PubMed  CAS  Google Scholar 

  53. Millart H, Alouane L, Oszust F, Chevallier S, Robinet A (2009) Involvement of P2Y receptors in pyridoxal-5′-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 23(3):279–292. doi:10.1111/j.1472-8206.2009.00677.x

    PubMed  CAS  Google Scholar 

  54. Nishijima S, Sugaya K, Miyazato M, Kadekawa K, Oshiro Y, Uchida A, Hokama S, Ogawa Y (2007) Restoration of bladder contraction by bone marrow transplantation in rats with underactive bladder. Biomed Res 28(5):275–280

    PubMed  CAS  Google Scholar 

  55. Huang YC, Shindel AW, Ning H, Lin G, Harraz AM, Wang G, Garcia M, Lue TF, Lin CS (2010) Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J Urol 183(3):1232–1240. doi:10.1016/j.juro.2009.11.012

    PubMed  CAS  Google Scholar 

  56. De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, Pozzobon M, Boldrin L, Okabe M, Cozzi E, Atala A, Gamba P, Sartore S (2007) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376. doi:10.1016/j.juro.2006.09.103

    PubMed  Google Scholar 

  57. Kartha S, Toback FG (1992) Adenine nucleotides stimulate migration in wounded cultures of kidney epithelial cells. J Clin Invest 90(1):288–292. doi:10.1172/JCI115851

    PubMed  CAS  Google Scholar 

  58. Zhao Z, Kapoian T, Shepard M, Lianos EA (2002) Adenosine-induced apoptosis in glomerular mesangial cells. Kidney Int 61(4):1276–1285. doi:10.1046/j.1523-1755.2002.00256.x

    PubMed  CAS  Google Scholar 

  59. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284(36):24035–24048. doi:10.1074/jbc.M109.014266

    PubMed  CAS  Google Scholar 

  60. Vonend O, Turner CM, Chan CM, Loesch A, Dell’Anna GC, Srai KS, Burnstock G, Unwin RJ (2004) Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int 66(1):157–166. doi:10.1111/j.1523-1755.2004.00717.xKID717

    PubMed  CAS  Google Scholar 

  61. Lee HT, Emala CW (2001) Systemic adenosine given after ischemia protects renal function via A(2a) adenosine receptor activation. Am J Kidney Dis 38(3):610–618. doi:10.1053/ajkd.2001.26888

    PubMed  CAS  Google Scholar 

  62. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. doi:10.1038/nrd2605

    PubMed  CAS  Google Scholar 

  63. Trujillo CA, Schwindt TT, Martins AH, Alves JM, Mello LE, Ulrich H (2009) Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry A 75(1):38–53. doi:10.1002/cyto.a.20666

    PubMed  Google Scholar 

  64. Morley JF, Hurtig HI (2010) Current understanding and management of Parkinson disease: five new things. Neurology 75(18 Suppl 1):S9–S15. doi:10.1212/WNL.0b013e3181fb3628

    PubMed  Google Scholar 

  65. Jun D, Kim K (2004) ATP-mediated necrotic volume increase (NVI) in sustancia nigra pars compacta dopaminergic neuron. Abstract Viewer/Itinerary Planner; Program no. 222.18. Society for Neuroscience, Washington, DC

  66. Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447(2–3):261–269

    PubMed  Google Scholar 

  67. Heine C, Wegner A, Grosche J, Allgaier C, Illes P, Franke H (2007) P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149(1):165–181. doi:10.1016/j.neuroscience.2007.07.015

    PubMed  CAS  Google Scholar 

  68. Scheibler P, Pesic M, Franke H, Reinhardt R, Wirkner K, Illes P, Norenberg W (2004) P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol 143(1):119–131. doi:10.1038/sj.bjp.0705916143/1/119

    PubMed  CAS  Google Scholar 

  69. Zona C, Marchetti C, Volonte C, Mercuri NB, Bernardi G (2000) Effect of P2 purinoceptor antagonists on kainate-induced currents in rat cultured neurons. Brain Res 882(1–2):26–35

    PubMed  CAS  Google Scholar 

  70. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86. doi:10.1124/pr.58.1.5

    PubMed  CAS  Google Scholar 

  71. Krugel U, Kittner H, Illes P (1999) Adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci Lett 265(1):49–52

    PubMed  CAS  Google Scholar 

  72. Krugel U, Kittner H, Franke H, Illes P (2001) Accelerated functional recovery after neuronal injury by P2 receptor blockade. Eur J Pharmacol 420(2–3):R3–R4

    PubMed  CAS  Google Scholar 

  73. Gaspard N, Vanderhaeghen P (2011) From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders. Develop Med Child Neurol 53(1):13–17. doi:10.1111/j.1469-8749.2010.03827.x

    PubMed  Google Scholar 

  74. Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F, Schwarz SC, Storch A, Zimmermann H, Schwarz J (2006) Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J Neurochem 99(3):913–923. doi:10.1111/j.1471-4159.2006.04132.x

    PubMed  CAS  Google Scholar 

  75. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492

    PubMed  CAS  Google Scholar 

  76. Morellia M, Di Paolob T, Wardasc J, Calonb F, Xiaod D, Schwarzschildd MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83(5):293–309

    Google Scholar 

  77. Haughey NJ, Mattson MP (2003) Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromolecular Med 3(3):173–180. doi:10.1385/NMM:3:3:173

    PubMed  Google Scholar 

  78. Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12(2):73–87. doi:10.1038/nrn2977

    PubMed  CAS  Google Scholar 

  79. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. doi:10.1016/S0140-6736(10)61349-9

    PubMed  Google Scholar 

  80. Zhang YX, Yamashita H, Ohshita T, Sawamoto N, Nakamura S (1995) ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res 691(1–2):205–212

    PubMed  CAS  Google Scholar 

  81. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109(3):297–324. doi:10.1016/j.pharmthera.2005.06.002

    PubMed  CAS  Google Scholar 

  82. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid beta requires P2X7 receptor expression. J Immunol 182(7):4378–4385. doi:10.4049/jimmunol.0803612

    PubMed  CAS  Google Scholar 

  83. McLarnon JG, Ryu JK, Walker DG, Choi HB (2006) Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65(11):1090–1097. doi:10.1097/01.jnen.0000240470.97295.d300005072-200611000-00008

    PubMed  CAS  Google Scholar 

  84. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147(1–2):56–61

    PubMed  CAS  Google Scholar 

  85. Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LR, Ulrich H (2007) New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 3(4):317–331. doi:10.1007/s11302-007-9074-y

    PubMed  CAS  Google Scholar 

  86. Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524

    PubMed  CAS  Google Scholar 

  87. Ballard C, Gauthier S, Corbett A, Brayne C, Jones AD, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    PubMed  Google Scholar 

  88. Resende RR, Majumder P, Gomes KN, Britto LR, Ulrich H (2007) P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-d-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 146(3):1169–1181. doi:10.1016/j.neuroscience.2007.02.041

    PubMed  CAS  Google Scholar 

  89. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120(1):29–40. doi:10.1172/JCI40543

    PubMed  CAS  Google Scholar 

  90. Ryu JK, Cho T, Wang YT, McLarnon JG (2009) Neural progenitor cells attenuate inflammatory reactivity and neuronal loss in an animal model of inflamed AD brain. J Neuroinflammation 6:39. doi:10.1186/1742-2094-6-39

    PubMed  Google Scholar 

  91. Chuang TT (2010) Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 1802(10):872–880. doi:10.1016/j.bbadis.2009.12.008

    PubMed  CAS  Google Scholar 

  92. Delarasse C, Auger R, Gonnord P, Fontaine B, Kanellopoulos JM (2011) The purinergic receptor P2X7 triggers α-secretase-dependent processing of the amyloid precursor protein. J Bio Chem 286:2596–2606. doi:10.1074/jbc.M110.200618

    CAS  Google Scholar 

  93. Knutsen LJ, Murray TF (1997) Adenosine and ATP epilepsy. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley, New York, pp 423–447

    Google Scholar 

  94. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28(37):9133–9144. doi:10.1523/JNEUROSCI.1820-08.2008

    PubMed  CAS  Google Scholar 

  95. Dona F, Ulrich H, Persike DS, Conceicao IM, Blini JP, Cavalheiro EA, Fernandes MJ (2009) Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 83(2–3):157–167. doi:10.1016/j.eplepsyres.2008.10.008

    PubMed  CAS  Google Scholar 

  96. Oses JP (2006) Modification by kainate-induced convulsions of the density of presynaptic P2X receptors in the rat hippocampus. Purinergic Signalling 2:252–253

    Google Scholar 

  97. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. doi:10.1152/physrev.00043.2006

    PubMed  CAS  Google Scholar 

  98. Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, Di Iorio P (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414

    PubMed  CAS  Google Scholar 

  99. Chua K, Kima M, Junga K, Jeond D, Leea S, Kima J, Jeongf S, Kimg SU, Leea SK, Shind H, Roha J (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 1023(2):213–221. doi:10.1016/j.brainres.2004.07.045

    Google Scholar 

  100. Guttinger M, Fedele D, Koch P, Padrun V, Pralong WF, Brustle O, Boison D (2005) Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 46(8):1162–1169

    PubMed  Google Scholar 

  101. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63(7):686–699

    PubMed  CAS  Google Scholar 

  102. Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M, Noguchi K (2001) Differential regulation of P2X(3) mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 91(3):351–360

    PubMed  CAS  Google Scholar 

  103. Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP, Verderio C (2006) A role for P2X7 in microglial proliferation. J Neurochem 99(3):745–758. doi:10.1111/j.1471-4159.2006.04101.x

    PubMed  CAS  Google Scholar 

  104. Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP (2009) The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 132(Pt 8):2206–2218. doi:10.1093/brain/awp147

    PubMed  Google Scholar 

  105. Cunha RA (2005) Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1(2):111–134. doi:10.1007/s11302-005-0649-1

    PubMed  CAS  Google Scholar 

  106. Nedeljkovic N, Bjelobaba I, Subasic S, Lavrnja I, Pekovic S, Stojkov D, Vjestica A, Rakic L, Stojiljkovic M (2006) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30(6):541–546. doi:10.1016/j.cellbi.2006.03.001

    PubMed  CAS  Google Scholar 

  107. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3):199–209. doi:10.1038/nrg758nrg758

    PubMed  CAS  Google Scholar 

  108. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–399, quiz 400–391

    PubMed  Google Scholar 

  109. Fujishita K, Koizumi S, Inoue K (2006) Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signal 2(3):491–498. doi:10.1007/s11302-005-7331-5

    PubMed  CAS  Google Scholar 

  110. Holzer AM, Granstein RD (2004) Role of extracellular adenosine triphosphate in human skin. J Cutan Med Surg 8(2):90–96. doi:10.1007/s10227-004-0125-5

    PubMed  Google Scholar 

  111. Greig AV, James SE, McGrouther DA, Terenghi G, Burnstock G (2003) Purinergic receptor expression in the regeneration epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12(6):860–871

    PubMed  CAS  Google Scholar 

  112. Greig AV, Linge C, Cambrey A, Burnstock G (2003) Purinergic receptors are part of a signaling system for keratinocyte proliferation, differentiation, and apoptosis in human fetal epidermis. J Invest Dermatol 121(5):1145–1149. doi:10.1046/j.1523-1747.2003.12567.x

    PubMed  CAS  Google Scholar 

  113. Inoue K, Denda M, Tozaki H, Fujishita K, Koizumi S (2005) Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes. J Invest Dermatol 124(4):756–763. doi:10.1111/j.0022-202X.2005.23683.x

    PubMed  CAS  Google Scholar 

  114. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. doi:10.1038/cddis.2009.11

    PubMed  CAS  Google Scholar 

  115. Volonte C, Amadio S, D’Ambrosi N, Colpi M, Burnstock G (2006) P2 receptor web: complexity and fine-tuning. Pharmacol Ther 112(1):264–280. doi:10.1016/j.pharmthera.2005.04.012

    PubMed  CAS  Google Scholar 

  116. Snyder JC, Teisanu RM, Stripp BR (2009) Endogenous lung stem cells and contribution to disease. J Pathol 217(2):254–264. doi:10.1002/path.2473

    PubMed  CAS  Google Scholar 

  117. Chistiakov DA (2010) Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation. J Biomed Sci 17:92. doi:10.1186/1423-0127-17-92

    PubMed  CAS  Google Scholar 

  118. Sueblinvong V, Weiss DJ (2010) Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 156(3):188–205

    PubMed  CAS  Google Scholar 

  119. Evans MJ, Cabral-Anderson LJ, Freeman G (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. Lab Invest 38(6):648–653

    PubMed  CAS  Google Scholar 

  120. Stripp BR (2008) Hierarchical organization of lung progenitor cells: is there an adult lung tissue stem cell? Proc Am Thorac Soc 5(6):695–698. doi:10.1513/pats.200801-011AW

    PubMed  Google Scholar 

  121. Teisanu RM, Lagasse E, Whitesides JF, Stripp BR (2009) Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells 27(3):612–622. doi:10.1634/stemcells.2008-0838

    PubMed  CAS  Google Scholar 

  122. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24(6):662–670

    PubMed  CAS  Google Scholar 

  123. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156(1):269–278. doi:10.1016/S0002-9440(10)64727-X

    PubMed  CAS  Google Scholar 

  124. De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans JP, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23(4):1153–1160. doi:10.1096/fj.08-109579

    PubMed  Google Scholar 

  125. Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR (2000) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278(6):L1256–L1263

    PubMed  CAS  Google Scholar 

  126. Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans JP, Adriaensen D (2009) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131(1):55–74. doi:10.1007/s00418-008-0495-7

    PubMed  CAS  Google Scholar 

  127. Conway JD, Bartolotta T, Abdullah LH, Davis CW (2003) Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. Am J Physiol Lung Cell Mol Physiol 284(6):L945–L954. doi:10.1152/ajplung.00410.200200410.2002

    PubMed  CAS  Google Scholar 

  128. Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615(1–2):7–32

    PubMed  CAS  Google Scholar 

  129. Wesley UV, Bove PF, Hristova M, McCarthy S, van der Vliet A (2007) Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282(5):3213–3220. doi:10.1074/jbc.M606533200

    PubMed  CAS  Google Scholar 

  130. Ethier MF, Chander V, Dobson JG Jr (1993) Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 265(1 Pt 2):H131–H138

    PubMed  CAS  Google Scholar 

  131. Montesinos MC, Desai A, Chen JF, Yee H, Schwarzschild MA, Fink JS, Cronstein BN (2002) Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol 160(6):2009–2018. doi:10.1016/S0002-9440(10)61151-0

    PubMed  CAS  Google Scholar 

  132. Allen-Gipson DS, Wong J, Spurzem JR, Sisson JH, Wyatt TA (2006) Adenosine A2A receptors promote adenosine-stimulated wound healing in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 290(5):L849–L855. doi:10.1152/ajplung.00373.2005

    PubMed  CAS  Google Scholar 

  133. Erjefalt JS, Persson CG (1997) Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax 52(11):1010–1012

    PubMed  CAS  Google Scholar 

  134. Wills-Karp M (1999) Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 17:255–281. doi:10.1146/annurev.immunol.17.1.255

    PubMed  CAS  Google Scholar 

  135. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919. doi:10.1038/nm1617

    PubMed  CAS  Google Scholar 

  136. la Sala A, Sebastiani S, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99(5):1715–1722

    PubMed  Google Scholar 

  137. Muller T, Vieira RP, Grimm M, Durk T, Cicko S, Zeiser R, Jakob T, Martin SF, Blumenthal B, Sorichter S, Ferrari D, Di Virgillio F, Idzko M (2011) A potential role for P2X7R in allergic airway inflammation in mice and humans. Am J Respir Cell Mol Biol 44(4):456–464. doi:10.1165/rcmb.2010-0129OC

    PubMed  Google Scholar 

  138. Polosa R, Holgate ST (2006) Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets 7(6):699–706

    PubMed  CAS  Google Scholar 

  139. Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171(1):338–345

    PubMed  CAS  Google Scholar 

  140. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Dikov MM, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on proinflammatory adenosine signaling in mast cells. J Immunol 180(11):7212–7220

    PubMed  CAS  Google Scholar 

  141. Gibson PG, Manning PJ, O’Byrne PM, Girgis-Gabardo A, Dolovich J, Denburg JA, Hargreave FE (1991) Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils, and their progenitors. Am Rev Respir Dis 143(2):331–335

    PubMed  CAS  Google Scholar 

  142. Dorman SC, Efthimiadis A, Babirad I, Watson RM, Denburg JA, Hargreave FE, O’Byrne PM, Sehmi R (2004) Sputum CD34+IL-5Ralpha+ cells increase after allergen: evidence for in situ eosinophilopoiesis. Am J Respir Crit Care Med 169(5):573–577. doi:10.1164/rccm.200307-1004OC200307-1004OC

    PubMed  Google Scholar 

  143. Catalli AE, Thomson JV, Babirad IM, Duong M, Doyle TM, Howie KJ, Newbold P, Craggs RI, Foster M, Gauvreau GM, O’Byrne PM, Sehmi R (2008) Modulation of beta1-integrins on hemopoietic progenitor cells after allergen challenge in asthmatic subjects. J Allergy Clin Immunol 122(4):803–810. doi:10.1016/j.jaci.2008.07.021

    PubMed  CAS  Google Scholar 

  144. Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD, Sehmi R (2005) Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 115(1):95–102. doi:10.1016/j.jaci.2004.09.022

    PubMed  CAS  Google Scholar 

  145. Daikeler T, Tyndall A (2007) Autoimmunity following haematopoietic stem-cell transplantation. Best Pract Res Clin Haematol 20(2):349–360. doi:10.1016/j.beha.2006.09.008

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HU acknowledges grant support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, project no. 2006/61285-9. TG, PDN, and CL are supported by fellowships from FAPESP. ARC, MMP, and IC are grateful for fellowships from CNPq. Grant support by FAPERGS/CNPq - PRONEX, Brazil, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, T., Cappellari, A.R., Pillat, M.M. et al. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signalling 8, 523–537 (2012). https://doi.org/10.1007/s11302-011-9282-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9282-3

Keywords

Navigation