Skip to main content
Log in

Simplex Mesh Diffusion Snakes: Integrating 2D and 3D Deformable Models and Statistical Shape Knowledge in a Variational Framework

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In volumetric medical imaging the boundaries of structures are frequently blurred due to insufficient resolution. This artefact is particularly serious in structures such as articular joints, where different cartilage surfaces appear to be linked at the contact regions. Traditional image segmentation techniques fail to separate such erroneously linked structures, and a sensible approach has been the introduction of prior-knowledge to the segmentation process. Although several 3D prior-knowledge based techniques that could successfully segment these structures have been published, most of them are pixel-labelling schemes that generate pixellated images with serious geometric distortions. The Simplex Mesh Diffusion Snakes segmentation technique presented here is an extension of the two dimensional Diffusion Snakes, but without any restriction on the number of dimensions of the data set. This technique integrates a Simplex Mesh, a region-based deformable model and Statistical Shape Knowledge into a single energy functional, so that it takes into account both the image information available directly from the data set, and the shape statistics obtained from a training process. The resulting segmentations converge correctly to well defined boundaries and provide a feasible location for those removed boundaries. The algorithm has been evaluated using 2D and 3D data sets obtained with Magnetic Resonance Imaging (MRI) and has proved to be robust to most of the MRI artefacts, providing continuous and smooth curves or surfaces with sub-pixel resolution. Additionally, this novel technique opens a wide range of opportunities for segmentation and tracking time-dependent 3D structures or data sets with more than three dimensions, due to its non-restrictive mathematical formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajcsy, R., & Kovačič, S. (1989). Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 46(1), 1–21.

    Article  Google Scholar 

  • Blake, A., & Isard, M. (2000). Active contours. London: Springer.

    Google Scholar 

  • Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press.

    Google Scholar 

  • Caselles, V., Catté, F., Coll, T., & Dibos, F. (1993). A geometric model for Active Contours in image processing. Numerische Mathematik, 66(1), 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic Active Contours. In Proceedings of the IEEE international conference on computer vision (pp. 694–699) 1995.

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chakraborty, A., Staib, L. H., & Duncan, J. S. (1996). Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, 15(6), 859–870.

    Article  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active Contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chen, Y., Thiruvenkadam, S., Tagare, H. D., Huang, F., Wilson, D., & Geiser, E. A. (2001). On the incorporation of shape priors into geometric active contours. In Proceedings of the IEEE workshop on variational and level set methods in computer vision, Vancouver (pp. 145–152) 2001.

  • Cohen, L. D. (1991). Note on Active Contour models and balloons. CVGIP: Image Understanding, 53(2), 211–218.

    Article  MATH  Google Scholar 

  • Cohen, L. D., & Cohen, I. (1993). Finite-element methods for Active Contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1131–1147.

    Article  Google Scholar 

  • Cootes, T. F., Taylor, C. J., Cooper, D., & Graham, J. (1992). Training Models of shape from sets of examples. In Proceedings of the third British machine vision conference (pp. 9–18) 1992.

  • Cootes, T. F., Cooper, D., Taylor, C. J., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59.

    Article  Google Scholar 

  • Cremers, D. (2002). Statistical Shape Knowledge in variational image segmentation. PhD Thesis, Universität Mannheim, Mannheim.

  • Cremers, D., Kohlberger, T., & Schnörr, C. (2003). Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36(9), 1929–1943.

    Article  MATH  Google Scholar 

  • Cremers, D., & Soatto, S. (2003). A pseudo distance for shape priors in level set segmentation. In O. Faugeras & N. Paragios (Eds.), Proceedings of the IEEE international workshop on variational, geometric and level set methods in computer vision, Nice (pp. 169–176) 2003.

  • Cremers, D., Tischhäuser, F., Weickert, J., & Schnör, C. (2002). Diffusion Snakes: introducing Statistical Shape Knowledge into the Mumford-Shah functional. International Journal of Computer Vision, 50(3), 295–313.

    Article  MATH  Google Scholar 

  • Dam, E., Fletcher, P.T., Pizer, S. M., Tracton, G., & Rosenman, J. (2004). Prostate shape modeling based on principal geodesic analysis bootstrapping. In Lecture notes in computer science: Vol. 3217. Medical image computing and computer-assisted intervention MICCAI’04, Saint-Malo (pp. 1008–1016). Berlin: Springer.

    Google Scholar 

  • Davies, R. H. (2002). Learning shape: optimal models for analysing natural variability. PhD Thesis. University of Manchester, Manchester.

  • Delingette, H. (2004). General object reconstruction based on simplex mesh (Research Report). INRIA, Sophia Antipolis.

  • Delingette, H., & Montagnat, J. (2000). New algorithms for controlling active contours shape and topology. In Lecture notes in computer science: Vol. 1843. Proceedings of the 6th European conference on computer vision (pp. 381–395). Berlin: Springer.

    Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (2002). Statistical shape analysis. Chichester: Wiley.

    Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active Contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A., & Yezzi, A. J. (1995). Gradient flows and geometric active contour models. In Proceedings of the IEEE international conference on computer vision (pp. 810–815) 1995.

  • Klein, P. (1999). Calculus with vectors and matrices. Stockholm: Stockholms Universitet.

    Google Scholar 

  • Lachaud, J. O., & Montanvert, A. (1999). Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Medical Image Analysis, 3(2), 187–207.

    Article  Google Scholar 

  • Leitner, F., & Cinquin, P. (1991). Complex topology 3D objects segmentation. In Proceedings of the SPIE conference on advances in intelligent robotics systems (Vol. 1609) 1991.

  • Leroy, B., Herlin, I., & Cohen, L. D. (1996). Multi-resolution algorithms for Active Contour models. In Proceedings of the 12th international conference on analysis and optimization of systems, images, wavelets and PDE’S, Rocquencourt, France, 1996.

  • Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2000). Statistical shape influence in Geodesic Active Contours. In Proceedings on the conference on computer vision and pattern recognition, Hilton Head Islands (Vol. 1, pp. 316–323) 2000.

  • Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.

    Article  Google Scholar 

  • McInerney, T., & Terzopoulos, D. (1996). Deformable Models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91–108.

    Article  Google Scholar 

  • McInerney, T., & Terzopoulos, D. (1999). Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging, 18(10), 840–850.

    Article  Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., & Sethain, J. A. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 79(1), 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Papadopoulo, T., & Lourakis, M. I. A. (2004). Estimating the Jacobian of the singular value decomposition: theory and applications (Research Report). INRIA, Sophia Antipolis.

  • Paragios, N., & Deriche, R. (1999). Geodesic active regions for supervised texture segmentation. In Proceedings of IEEE international conference on computer vision (Vol. 2, pp. 926–932) 1999.

  • Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3), 223–247.

    Article  MATH  Google Scholar 

  • Paragios, N., & Rousson, M. (2002). Shape prior for level set representations. In Proceedings of the European conference on computer vision (Vol. 2, pp. 78–92) 2002.

  • Pentland, A., & Sclaroff, S. (1991). Closed-form solutions for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 715–729.

    Article  Google Scholar 

  • Pitiot, A., Delingette, H., Ayache, N., & Thompson, P. M. (2003). Expert-knowledge-guided segmentation system for brain MRI. In R. E. Ellis & T. M. Peters (Eds.), Lecture notes in computer science: Vol. 2879. Medical image computing and computer-assisted intervention MICCAI’03, Montreal (pp. 644–652). Berlin: Springer.

    Google Scholar 

  • Pizer, S. M., Fletcher, P. T., Joshi, S., Thall, A., Chen, J. Z., Fridman, Y. (2003). Deformable M-reps for 3D medical image segmentation. International Journal of Computer Vision, 55(2), 85–106.

    Article  Google Scholar 

  • Romdhani, S., Gong, S., & Psarrou, A. (1999). A multi-view nonlinear active shape model using kernel PCA. In Proceedings of the British machine vision conference, Nottingham (pp. 483–492) 1999.

  • Ronfard, R. (1994). Region-based strategies for Active Contour models. International Journal of Computer Vision, 13(2), 229–251.

    Article  Google Scholar 

  • Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In Lecture notes in computer science: Vol. 2351. Proceedings of the European conference in computer vision (pp. 78–93). Berlin: Springer.

    Google Scholar 

  • Samson, C., Blanc-Féraud, L., Aubert, G., & Zerubia, J. (1999). A level set model for image classification. In Proceedings of the international conference of scale-space theories in computer vision (pp. 306–317) 1999.

  • Singh, A., Goldgof, D., & Terzopoulos, D. (Eds.) (1998). Deformable Models in medical image analysis. Los Alamitos: IEEE Press.

    Google Scholar 

  • Staib, L.H., & Duncan, J. (1989). Parametrically Deformable Contour models. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 98–103) 1989.

  • Tejos, C., Hall, L. D., & Cárdenas-Blanco, A. (2004). Segmentation of articular cartilage using active contours and prior knowledge. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, San Francisco (pp. 1648–1651).

  • Tejos, C., Cárdenas-Blanco, A., & Hall, L. D. (2005). Active Contours and Statistical Shape Knowledge: an automatic solution for segmentation of articular cartilage from MR images which have a partial loss of boundaries. In Proceedings 13th international conference of international society of magnetic resonance in medicine, Miami, 2004.

  • Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., et al. (2001). Model-based curve evolution technique for image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 463–468) 2001.

  • Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22(2), 137–154.

    Article  Google Scholar 

  • Twining, C. J., & Taylor, C. J. (2001). Kernel principal component analysis and the construction of non-linear active shape models. In Proceedings of the British machine vision conference, Manchester (pp. 23–32) 2001.

  • Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Yezzi, A., Tsai, A., & Willsky, A. (1999). A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings of the IEEE international conference on computer vision (Vol. 2, pp. 898–903) 1999.

  • Yuille, A. L., Hallinan, P. W., & Cohen, D. S. (1992). Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8(2), 99–111.

    Article  Google Scholar 

  • Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Tejos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejos, C., Irarrazaval, P. & Cárdenas-Blanco, A. Simplex Mesh Diffusion Snakes: Integrating 2D and 3D Deformable Models and Statistical Shape Knowledge in a Variational Framework. Int J Comput Vis 85, 19–34 (2009). https://doi.org/10.1007/s11263-009-0241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0241-1

Keywords

Navigation