Skip to main content

Advertisement

Log in

The role of zinc in urinary stone disease

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

In recent years, the role of trace elements in lithogenesis has received steadily increasing attention. It is well documented that some trace elements can influence the morphology and speed of the crystallization process. Zinc has been found in significant amounts in calcium stones relative or organic stones (uric acid and cystine), probably substituting calcium in crystals because of their similarity in charge and size. High Zn levels are present in carbapatite of Randal’s plaques suggesting that zinc could promote calcium phosphate deposition in the medullar interstitium. Large-scale epidemiological studies have found an association of increased dietary zinc intake with increased risk of nephrolithiasis in adults but not in adolescents. Most studies examining urinary zinc levels in adults have reported increased urinary Zn excretion in stone formers. In an experimental model of organic crystal formation produced by silencing xanthine dehydrogenase in Drosophila fly, maneuvers that reduce Zn excretion have shown to reduce crystal formation in the lumen of the Malpighian tubules. This is curious because this is not a model of calcium stone formation. Finally, zinc supplementation has been associated with increased admissions for urinary lithiasis in men, but no change in calcium stone formation in children. Perhaps, some of these contradicting findings can be explained in part by the in vitro effect of zinc on the type and amount of calcium phosphate formed: At low concentrations, Zn inhibited the crystal growth of dicalcium phosphate dihydrate, octacalcium phosphate, and apatite, and at higher concentrations, it promoted the formation of amorphous calcium phosphate. Thus, further studies are needed to see whether manipulation of Zn metabolism can inhibit calcium stone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shoag J, Tasian GE, Goldfarb DS, Eisner BH (2015) The new epidemiology of nephrolithiasis. Adv Chronic Kidney Dis 22(4):273–278

    Article  PubMed  Google Scholar 

  2. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344

    Article  CAS  PubMed  Google Scholar 

  3. Hofbauer J, Steffan I, Höbarth K, Vujicic G, Schwetz H, Reich G, Zechner O (1991) Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J Urol 145(1):93–96

    Article  CAS  PubMed  Google Scholar 

  4. Atakan IH, Kaplan M, Seren G, Aktoz T, Gül H, Inci O (2007) Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Int Urol Nephrol 39(2):351–356

    Article  CAS  PubMed  Google Scholar 

  5. Welshman SG, McGeown MG (1972) A quantitative investigation of the effects on the growth of calcium oxalate crystals on potential inhibitors. Br J Urol 44(6):677–680

    Article  CAS  PubMed  Google Scholar 

  6. Sutor DJ (1969) Growth studies of calcium oxalates in the presence of various ions and compounds. Br J Urol 41:171–178

    Article  CAS  PubMed  Google Scholar 

  7. Bazin D, Chevallier P, Matzen G, Jungers P, Daudon M (2007) Heavy elements in urinary stones. Urol Res 35(4):179–184

    Article  CAS  PubMed  Google Scholar 

  8. Keshavarzi B, Yavarashayeri N, Irani D, Moore F, Zarasvandi A, Salari M (2015) Trace elements in urinary stones: a preliminary investigation in Fars province, Iran. Environ Geochem Health 37(2):377–389

    Article  CAS  PubMed  Google Scholar 

  9. Hannache B, Boutefnouchet A, Bazin D, Daudon M, Foy E, Rouzière S, Dahdouh A (2015) Presence and role of trace elements in urinary calculi. Prog Urol 25(1):22–26

    Article  CAS  PubMed  Google Scholar 

  10. Carpentier X, Bazin D, Combes C, Mazouyes A, Rouzière S, Albouy PA, Foy E, Daudon M (2011) High Zn content of Randall’s plaque: a μ-X-ray fluorescence investigation. J Trace Elem Med Biol 25(3):160–165

    Article  CAS  PubMed  Google Scholar 

  11. Tang J, McFann K, Chonchol M (2012) Dietary zinc intake and kidney stone formation: evaluation of NHANES III. Am J Nephrol 36:549–553

    Article  PubMed  Google Scholar 

  12. Turney BW, Appleby PN, Reynard JM, Noble JG, Key TJ, Allen NE (2014) Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 29(5):363–369

    Article  CAS  PubMed  Google Scholar 

  13. Tasian GE, Ross ME, Song L, Grundmeier RW, Massey J, Denburg MR, Copelovitch L, Warner S, Chi T, Killilea DW, Stoller ML, Furth SL (2017) Dietary zinc and incident calcium kidney stones. J Urol 197(5):1342–1348

    Article  CAS  PubMed  Google Scholar 

  14. Komleh K, Hada P, Pendse AK, Singh PP (1990) Zinc, copper and manganese in serum urine and stones. Int Urol Nephrol 22(2):113–118

    Article  CAS  PubMed  Google Scholar 

  15. Trinchieri A, Mandressi A, Luongo P, Rovera F, Longo G (1992) Urinary excretion of citrate, glycosaminoglycans, magnesium and zinc in relation to age and sex in normal subjects and in patients who form calcium stones. Scand J Urol Nephrol 26(4):379–386

    Article  CAS  PubMed  Google Scholar 

  16. Ozgurtas T, Yakut G, Gulec M, Serdar M, Kutluay T (2004) Role of urinary zinc and copper on calcium oxalate stone formation. Urol Int 72(3):233–236

    Article  CAS  PubMed  Google Scholar 

  17. Chasapis CT, Spiliopoulou CA, Loutsidou AC, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534

    Article  CAS  PubMed  Google Scholar 

  18. Hambidge M, Krebs NF (2001) Interrelationships of key variables of human zinc homeostasis: relevance to dietary zinc requirements. Annu Rev Nutr 21:429–452

    Article  CAS  PubMed  Google Scholar 

  19. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130:1360S–1366S

    Article  CAS  PubMed  Google Scholar 

  20. Hambidge KM, Miller LV, Krebs NF (2011) Physiological requirements for zinc. Int J Vitam Nutr Res 81:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14(3–4):251–270

    Article  CAS  PubMed  Google Scholar 

  22. Kambe T (2011) An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 75(6):1036–1043

    Article  CAS  PubMed  Google Scholar 

  23. Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29(1):153–176

    Article  PubMed  Google Scholar 

  24. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  CAS  PubMed  Google Scholar 

  25. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24(1):151–172

    Article  CAS  PubMed  Google Scholar 

  26. Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53(8):1549–1551

    Article  CAS  PubMed  Google Scholar 

  27. Eide DJ (2012) An ‘inordinate fondness for transporters’ explained? Sci Signal 5(210):5

    Article  Google Scholar 

  28. Chi T, Kim MS, Lang S, Bose N, Kahn A, Flechner L, Blaschko SD, Zee T, Muteliefu G, Bond N, Kolipinski M, Fakra SC, Mandel N, Miller J, Ramanathan A, Killilea DW, Brückner K, Kapahi P, Stoller ML (2015) A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS ONE 10(5):e0124150

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dow JAT, Romero MF (2010) Drosophila provides rapid modeling of renal development, function, and disease. AJP Renal Physiol 299:F1237–F1244

    Article  CAS  Google Scholar 

  30. Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J 23:2650–2661

    Article  CAS  PubMed  Google Scholar 

  31. Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, Multhaup G, Georgiev O, Schaffner W (2006) Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res 34:4866–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson AR, Munoz A, Gottlieb JL, Jarrard DF (2007) High dose zinc increases hospital admissions due to genitourinary complications. J Urol 177(2):639–643

    Article  CAS  PubMed  Google Scholar 

  33. Yousefichaijan P, Cyrus A, Dorreh F, Rafeie M, Sharafkhah M, Frohar F, Safi F (2015) Oral zinc sulfate as adjuvant treatment in children with nephrolithiasis: a randomized, double-blind, placebo-controlled clinical trial. Iran J Pediatr 25(6):e1445

    Article  PubMed  PubMed Central  Google Scholar 

  34. LeGeros RZ, Bleiwas CB, Retino M, Rohanizadeh R, LeGeros JP (1999) Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. Am J Dent 12(2):65–71

    CAS  PubMed  Google Scholar 

  35. Letavernier E, Vandermeersch S, Traxer O, Tligui M, Baud L, Ronco P, Haymann JP, Daudon M (2015) Demographics and characterization of 10,282 Randall plaque-related kidney stones: A new epidemic? Medicine (Baltimore) 94(10):e566

    Article  Google Scholar 

  36. Chen YH, Liu HP, Chen HY, Tsai FJ, Chang CH, Lee YJ, Lin WY, Chen WC (2011) Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney Int 80(4):369–377

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Luis Negri.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negri, A.L. The role of zinc in urinary stone disease. Int Urol Nephrol 50, 879–883 (2018). https://doi.org/10.1007/s11255-017-1784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1784-7

Keywords

Navigation