Skip to main content
Log in

Influence of volume administration on Doppler-based renal resistive index, renal hemodynamics and renal function in medical intensive care unit patients with septic-induced acute kidney injury: a pilot study

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Impact of volume challenge (VC) on renal hemodynamics and renal function in patients with septic-induced acute kidney injury in addition to transpulmonary thermodilution (TPTD)-derived hemodynamic parameters.

Methods

Systemic hemodynamic parameters derived from TPTD, Doppler-based resistive index (RI) urine output, creatinine and urea levels were obtained before, after and 24 h after VC.

Results

Heart rate (p < 0.045), systolic blood pressure (p < 0.030) and mean arterial pressure (p < 0.001) were significantly altered after VC in VC responders compared to baseline immediately after VC but not after 24 h (p = 0.719; p = 0.576; p = 0.435).TPTD-derived cardiac function parameter cardiac index significantly increased after VC (p < 0.001) as well after 24 h (p < 0.02) in the responder group. Stroke volume index also significantly increased after VC (0.033) in responders immediately after VC, but not after 24 h of VC (p < 0.073). No significant changes could be observed in the non-responder group.Renal RI was not significantly different between VC responders and VC non-responders (p = 0.55) immediately after VC and after 24 h (p = 0.65).Creatinine levels in VC responders significantly decreased after 24 h (p < 0.001). Urine output increased from 400 to 542 ml/d in responders, but not statistically significant (p = 0.09). Vasopressor dose in VC responders was statistically significantly lower after 24 h (p < 0.001) compared to baseline.

Conclusions

Responders to VC with septic-induced AKI can benefit from an optimized hemodynamic environment. The resistive index to guide fluid therapy for renal hemodynamic management may be limited by the small magnitude of the changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore P, Oudemans-van Straaten HM et al (2010) Prevention of acute kidney injury and protection of renal function in the intensive care unit. Expert opinion of the Working Group for Nephrology, ESICM. Intensive Care Med 36:392–411

    Article  PubMed  Google Scholar 

  2. Metnitz PG, Krenn CG, Steltzer H, Lang T, Ploder J, Lenz K, Le Gall JR, Druml W (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051–2058

    Article  PubMed  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, Doig GS et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  4. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    Article  CAS  PubMed  Google Scholar 

  5. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  CAS  PubMed  Google Scholar 

  6. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock 2012. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  7. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent J-L (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moussa MD, Scolletta S, Fagnoul D, Pasquier P, Brasseur A, Taccone FS, Vincent JL, De Backer D (2015) Effects of fluid administration on renal perfusion in critically ill patients. Crit Care 12(19):250

    Article  Google Scholar 

  9. Prowle JR, Bellomo R (2013) Fluid administration and the kidney. Curr Opin Crit Care. 19(4):308–314

    Article  PubMed  Google Scholar 

  10. Felbinger TW, Reuter DA, Eltzschig HK et al (2005) Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth 17(4):241–248

    Article  PubMed  Google Scholar 

  11. Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32:1553–1559

    Article  PubMed  Google Scholar 

  12. Duranteau J, Deruddre S, Vigue B et al (2008) Doppler monitoring of renal hemodynamics: why the best is yet to come. Intensive Care Med 34:1360–1361

    Article  PubMed  Google Scholar 

  13. Deruddre S, Cheisson G, Mazoit JX et al (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33:1557–1562

    Article  PubMed  Google Scholar 

  14. Darmon M, Schortgen F, Vargas F et al (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37:68–76

    Article  PubMed  Google Scholar 

  15. Huber W, Umgelter A, Reindl W et al (2008) Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med 36(8):2348–2354

    Article  PubMed  Google Scholar 

  16. Goepfert MS, Reuter DA, Akyol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33(1):96–103

    Article  PubMed  Google Scholar 

  17. Fincke R, Hochman JS, Lowe AM et al (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44(2):340–348

    Article  PubMed  Google Scholar 

  18. Godje O, Hoke K, Goetz AE et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30(1):52–58

    Article  PubMed  Google Scholar 

  19. Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124(5):1900–1908

    Article  PubMed  Google Scholar 

  20. Reuter DA, Felbinger TW, Schmidt C et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28(4):392–398

    Article  PubMed  Google Scholar 

  21. Katzenelson R, Perel A, Berkenstadt H et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32(7):1550–1554

    Article  PubMed  Google Scholar 

  22. Yoon DY, Kim SH, Kim HD, Na DG et al (1995) Doppler sonography in experimentally induced acute renal failure in rabbits. Resistive index versus serum creatinine levels. Invest Radiol 30:168–172

    Article  CAS  PubMed  Google Scholar 

  23. Platt JF, Rubin JM, Ellis JH (1991) Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 179:419–423

    Article  CAS  PubMed  Google Scholar 

  24. Bude RO, Rubin JM (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211:411–417

    Article  CAS  PubMed  Google Scholar 

  25. LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732

    Article  CAS  PubMed  Google Scholar 

  26. Kirkpatrick AW, Colistro R, Laupland KB et al (2007) Renal arterial resistive index response to intraabdominal hypertension in a porcine model. Crit Care Med 35:207–213

    Article  PubMed  Google Scholar 

  27. Schnell D, Reynaud M, Venot M, Le Maho AL, Dinic M, Baulieu M et al (2014) Resistive index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: results of a pilot study. Minerva Anestesiol 80:1273–1281

    CAS  PubMed  Google Scholar 

  28. Dewitte A, Coquin J, Meyssignac B, Joannès-Boyau O, Fleureau C, Roze H et al (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16:R165

    Article  PubMed  PubMed Central  Google Scholar 

  29. Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593

    Article  CAS  PubMed  Google Scholar 

  30. Bagshaw SM, Bennett M, Devarajan P, Bellomo R (2012) Urine biochemistry in septic and non-septic acute kidney injury: a prospective observational study. J Crit Care 28:371–378

    Article  PubMed  PubMed Central  Google Scholar 

  31. Darmon M, Schortgen F, Vargas F et al (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37(1):68–76

    Article  PubMed  Google Scholar 

  32. Schnell D, Camous L, Guyomarch S et al (2013) Renal perfusion assessment by renal Doppler during fluid challenge in sepsis. Crit Care Med 41(5):1214–1220

    Article  PubMed  Google Scholar 

Download references

Authors’ contribution

Tobias Lahmer (TL), Sebastian Rasch (SR), Christopher Schnappauf (CS), Roland M Schmid (RMS), Wolfgang Huber (WH) have contributed to this study. TL, CS, SR, RMS, WH studied the design. TL, CS, SR, WH collected data. TL, CS, SR, RMS, WH were involved in data analysis. TL, CS, SR, RMS, WH wrote the manuscript. Study is approved by the institutional review board of the Technical University of Munich, Germany. Written informed consent was obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Lahmer.

Ethics declarations

Conflict of interest

Wolfgang Huber collaborates with Pulsion Medical Systems SE (Feldkirchen, Germany) as member of the Medical Advisory Board. All other authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahmer, T., Rasch, S., Schnappauf, C. et al. Influence of volume administration on Doppler-based renal resistive index, renal hemodynamics and renal function in medical intensive care unit patients with septic-induced acute kidney injury: a pilot study . Int Urol Nephrol 48, 1327–1334 (2016). https://doi.org/10.1007/s11255-016-1312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1312-1

Keywords

Navigation