Skip to main content
Log in

Contradictory to its effects on thrombin, C1-inhibitor reduces plasmin generation in the presence of thrombomodulin

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

C1-inhibitor (C1INH) was shown to enhance thrombin generation (TG) in the presence of thrombomodulin (TM) by reducing production of activated protein C. Because C1INH is known to inhibit fibrinolytic system proteases, the objective of this study was to evaluate the effect of moderate (3 IU/ml) and high (16 IU/ml) C1INH concentrations on TG and plasmin generation (PG) in the presence of TM. These concentrations were evaluated based on expected maximum plasma levels following C1INH replacement therapy and recently suggested supraphysiologic dosing. TG and PG were investigated in platelet poor plasmas obtained from 21 healthy donors. An assay designed to monitor the continuous generation of the 7-amino-4-methylcoumarin fluorescence from substrates specific to thrombin or plasmin was used to evaluate the impact of C1INH activity. To characterize the C1INH effects on TG and PG, the thrombin and plasmin concentration peaks and production rates were calculated. TM addition to donor plasma shifted the concentration dependence of C1INH on TG parameters from reduction to enhancement. Conversely, PG parameters were significantly reduced by 16 IU/ml in both the presence and absence of TM. Moderate C1INH concentration (3 IU/ml) reduced TG and PG in the absence of TM but did not significantly affect these parameters in the presence of TM. Finally, 3 IU/ml of C1INH reduced PG more so than TG in the absence of TM. The presented results suggest a mechanism by which C1INH could potentiate thrombosis by inhibition of fibrinolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tarandovskiy ID, Buehler PW, Ataullakhanov FI, Karnaukhova E (2019) C1-esterase inhibitor enhances thrombin generation and spatial fibrin clot propagation in the presence of thrombomodulin. Thromb Res 176:54–60. https://doi.org/10.1016/j.thromres.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Karnaukhova E (2013) C1-esterase inhibitor: biological activities and therapeutic applications. J Hematol Thromboembol Dis 1(3):1–7

    Google Scholar 

  3. Caliezi C, Wuillemin WA, Zeerleder S, Redondo M, Eisele B, Hack CE (2000) C1-Esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev 52(1):91–112

    CAS  PubMed  Google Scholar 

  4. Davis AE 3rd (2005) The pathophysiology of hereditary angioedema. Clin Immunol 114(1):3–9. https://doi.org/10.1016/j.clim.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  5. Cugno M, Bos I, Lubbers Y, Hack CE, Agostoni A (2001) In vitro interaction of C1-inhibitor with thrombin. Blood Coagul Fibrinolysis 12(4):253–260

    CAS  PubMed  Google Scholar 

  6. Brown EW, Ravindran S, Patston PA (2002) The reaction between plasmin and C1-inhibitor results in plasmin inhibition by the serpin mechanism. Blood Coagul Fibrinolysis 13(8):711–714

    CAS  PubMed  Google Scholar 

  7. Caccia S, Castelli R, Maiocchi D, Bergamaschini L, Cugno M (2011) Interaction of C1 inhibitor with thrombin on the endothelial surface. Blood Coagul Fibrinolysis 22(7):571–575. https://doi.org/10.1097/MBC.0b013e3283494ba7

    Article  CAS  PubMed  Google Scholar 

  8. Schoenfeld AK, Lahrsen E, Alban S (2016) Regulation of complement and contact system activation via C1 inhibitor potentiation and factor XIIa activity modulation by sulfated glycans: structure-activity relationships. PLoS ONE 11(10):e0165493. https://doi.org/10.1371/journal.pone.0165493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wuillemin WA, Minnema M, Meijers JC, Roem D, Eerenberg AJ, Nuijens JH, ten Cate H, Hack CE (1995) Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes: major role for C1-inhibitor. Blood 85(6):1517–1526

    CAS  PubMed  Google Scholar 

  10. Nuijens JH, Eerenberg-Belmer AJ, Huijbregts CC, Schreuder WO, Felt-Bersma RJ, Abbink JJ, Thijs LG, Hack CE (1989) Proteolytic inactivation of plasma C1-inhibitor in sepsis. J Clin Invest 84(2):443–450. https://doi.org/10.1172/JCI114185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whicher JT, Barnes MP, Brown A, Cooper MJ, Read R, Walters G, Williamson RC (1982) Complement activation and complement control proteins in acute pancreatitis. Gut 23(11):944–950

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Caccia S, Suffritti C, Cicardi M (2014) Pathophysiology of hereditary angioedema. Pediatr Allergy Immunol Pulmonol 27(4):159–163. https://doi.org/10.1089/ped.2014.0425

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shire ViroPharma. CINRYZE (C1 Esterase Inhibitor [Human]) prescribing information. http://pi.shirecontent.com/PI/PDFs/Cinryze_USA_ENG.pdf. Updated September 2014. Accessed Feb 19, 2018

  14. CSL Behring. Haegarda (C1-esterase inhibitor [human]) prescribing information. http://labeling.cslbehring.com/PRODUCT-DOCUMENT/US/HAEGARDA/EN/HAEGARDA-Referral-Form.pdf. Accessed May 24, 2018

  15. CSL Behring. Berinert (C1-esterase inhibitor [human]) prescribing information. http://labeling.cslbehring.com/PI/US/Berinert/EN/Berinert-Prescribing-Information.pdf. Accessed Feb 19, 2018

  16. Rathbun KM (2019) Angioedema after thrombolysis with tissue plasminogen activator: an airway emergency. Oxf Med Case Rep 2019(1):omy112. https://doi.org/10.1093/omcr/omy112

    Article  Google Scholar 

  17. Panagiotou A, Trendelenburg M, Osthoff M (2018) The lectin pathway of complement in myocardial ischemia/reperfusion injury-review of its significance and the potential impact of therapeutic interference by C1 esterase inhibitor. Front Immunol 9:1151. https://doi.org/10.3389/fimmu.2018.01151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castellano G, Franzin R, Stasi A, Divella C, Sallustio F, Pontrelli P, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Stallone G, Seelen M, Daha MR, Grandaliano G, Gesualdo L (2018) Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK signaling. Front Immunol 9:1002. https://doi.org/10.3389/fimmu.2018.01002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berger M, Baldwin WM 3rd, Jordan SC (2016) Potential roles for C1 inhibitor in transplantation. Transplantation 100(7):1415–1424. https://doi.org/10.1097/TP.0000000000000995

    Article  CAS  PubMed  Google Scholar 

  20. Saidi RF, Rajeshkumar B, Shariftabrizi A, Dresser K, Walter O (2014) Human C1 inhibitor attenuates liver ischemia-reperfusion injury and promotes liver regeneration. J Surg Res 187(2):660–666. https://doi.org/10.1016/j.jss.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  21. Tradtrantip L, Asavapanumas N, Phuan PW, Verkman AS (2014) Potential therapeutic benefit of C1-esterase inhibitor in neuromyelitis optica evaluated in vitro and in an experimental rat model. PLoS ONE 9(9):e106824. https://doi.org/10.1371/journal.pone.0106824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Committee GMPsD, Severe thrombus formation of Berinert IHS (2000). Deutsches Arzteblatt

  23. Gandhi PK, Gentry WM, Bottorff MB (2012) Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database. Pharmacotherapy 32(10):902–909. https://doi.org/10.1002/j.1875-9114.2012.01126

    Article  PubMed  Google Scholar 

  24. Crowther M, Bauer KA, Kaplan AP (2014) The thrombogenicity of C1 esterase inhibitor (human): review of the evidence. Allergy Asthma Proc 35(6):444–453. https://doi.org/10.2500/aap.2014.35.3799

    Article  CAS  PubMed  Google Scholar 

  25. Schurmann D, Herzog E, Raquet E, Nolte MW, May F, Muller-Cohrs J, Bjorkqvist J, Dickneite G, Pragst I (2014) C1-esterase inhibitor treatment: preclinical safety aspects on the potential prothrombotic risk. Thromb Haemost 112(5):960–971. https://doi.org/10.1160/TH13-06-0469

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horstick G, Berg O, Heimann A, Gotze O, Loos M, Hafner G, Bierbach B, Petersen S, Bhakdi S, Darius H, Horstick M, Meyer J, Kempski O (2001) Application of C1-esterase inhibitor during reperfusion of ischemic myocardium: dose-related beneficial versus detrimental effects. Circulation 104(25):3125–3131

    CAS  PubMed  Google Scholar 

  27. Levy JH, Szlam F, Gelone S (2014) Effects of a plasma-derived C1 esterase inhibitor on hemostatic activation, clot formation, and thrombin generation. Blood Coagul Fibrinolysis 25(8):883–889. https://doi.org/10.1097/MBC.0000000000000178

    Article  CAS  PubMed  Google Scholar 

  28. Landsem A, Fure H, Mollnes TE, Nielsen EW, Brekke OL (2016) C1-inhibitor efficiently delays clot development in normal human whole blood and inhibits Escherichia coli-induced coagulation measured by thromboelastometry. Thromb Res 143:63–70. https://doi.org/10.1016/j.thromres.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  29. van Geffen M, Cugno M, Lap P, Loof A, Cicardi M, van Heerde W (2012) Alterations of coagulation and fibrinolysis in patients with angioedema due to C1-inhibitor deficiency. Clin Exp Immunol 167(3):472–478. https://doi.org/10.1111/j.1365-2249.2011.04541.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baerga-Ortiz A, Rezaie AR, Komives EA (2000) Electrostatic dependence of the thrombin-thrombomodulin interaction. J Mol Biol 296(2):651–658. https://doi.org/10.1006/jmbi.1999.3447

    Article  CAS  PubMed  Google Scholar 

  31. Yang L, Manithody C, Rezaie AR (2006) Activation of protein C by the thrombin-thrombomodulin complex: cooperative roles of Arg-35 of thrombin and Arg-67 of protein C. Proc Natl Acad Sci USA 103(4):879–884. https://doi.org/10.1073/pnas.0507700103

    Article  CAS  PubMed  Google Scholar 

  32. Panteleev MA, Ovanesov MV, Kireev DA, Shibeko AM, Sinauridze EI, Ananyeva NM, Butylin AA, Saenko EL, Ataullakhanov FI (2006) Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys J 90(5):1489–1500. https://doi.org/10.1529/biophysj.105.069062

    Article  CAS  PubMed  Google Scholar 

  33. Wang W, Nagashima M, Schneider M, Morser J, Nesheim M (2000) Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J Biol Chem 275(30):22942–22947. https://doi.org/10.1074/jbc.M001760200

    Article  CAS  PubMed  Google Scholar 

  34. Anastasiou G, Gialeraki A, Merkouri E, Politou M, Travlou A (2012) Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis 23(1):1–10. https://doi.org/10.1097/MBC.0b013e32834cb271

    Article  CAS  PubMed  Google Scholar 

  35. Boehme MW, Deng Y, Raeth U, Bierhaus A, Ziegler R, Stremmel W, Nawroth PP (1996) Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology 87(1):134–140

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lohi O, Urban S, Freeman M (2004) Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids. Curr Biol 14(3):236–241. https://doi.org/10.1016/j.cub.2004.01.025

    Article  CAS  PubMed  Google Scholar 

  37. Furugohri T, Sugiyama N, Morishima Y, Shibano T (2011) Antithrombin-independent thrombin inhibitors, but not direct factor Xa inhibitors, enhance thrombin generation in plasma through inhibition of thrombin-thrombomodulin-protein C system. Thromb Haemost 106(6):1076–1083. https://doi.org/10.1160/TH11-06-0382

    Article  CAS  PubMed  Google Scholar 

  38. Perzborn E, Heitmeier S, Buetehorn U, Laux V (2014) Direct thrombin inhibitors, but not the direct factor Xa inhibitor rivaroxaban, increase tissue factor-induced hypercoagulability in vitro and in vivo. J Thromb Haemost 12(7):1054–1065. https://doi.org/10.1111/jth.12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dashkevich NM, Ovanesov MV, Balandina AN, Karamzin SS, Shestakov PI, Soshitova NP, Tokarev AA, Panteleev MA, Ataullakhanov FI (2012) Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 103(10):2233–2240. https://doi.org/10.1016/j.bpj.2012.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemker HC, Al Dieri R, De Smedt E, Beguin S (2006) Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost 96(5):553–561

    CAS  PubMed  Google Scholar 

  41. Tarandovskiy ID, Artemenko EO, Panteleev MA, Sinauridze EI, Ataullakhanov FI (2013) Antiplatelet agents can promote two-peaked thrombin generation in platelet rich plasma: mechanism and possible applications. PLoS ONE 8(2):e55688. https://doi.org/10.1371/journal.pone.0055688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97(3):425–434

    CAS  PubMed  Google Scholar 

  43. Gracheva MA, Urnova ES, Sinauridze EI, Tarandovskiy ID, Orel EB, Poletaev AV, Mendeleeva LP, Ataullakhanov FI, Balandina AN (2015) Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma. Leuk Lymphoma 56(12):3418–3425. https://doi.org/10.3109/10428194.2015.1041385

    Article  CAS  PubMed  Google Scholar 

  44. Tarandovskiy ID, Balandina AN, Kopylov KG, Konyashina NI, Kumskova MA, Panteleev MA, Ataullakhanov FI (2013) Investigation of the phenotype heterogeneity in severe hemophilia A using thromboelastography, thrombin generation, and thrombodynamics. Thromb Res 131(6):e274–280. https://doi.org/10.1016/j.thromres.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  45. Kamisato C, Furugohri T, Morishima Y (2016) A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: possible mechanisms of paradoxical enhancement of thrombin generation. Thromb Res 141:77–83. https://doi.org/10.1016/j.thromres.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  46. Matsumoto T, Nogami K, Shima M (2013) Simultaneous measurement of thrombin and plasmin generation to assess the interplay between coagulation and fibrinolysis. Thromb Haemost 110(4):761–768. https://doi.org/10.1160/TH13-04-0345

    Article  CAS  PubMed  Google Scholar 

  47. Chang GMT, Atkinson HM, Berry LR, Chan AKC (2017) Inhibition of plasmin generation in plasma by heparin, low molecular weight heparin, and a covalent antithrombin-heparin complex. Blood Coagul Fibrinolysis 28(6):431–437. https://doi.org/10.1097/MBC.0000000000000611

    Article  CAS  PubMed  Google Scholar 

  48. Simpson ML, Goldenberg NA, Jacobson LJ, Bombardier CG, Hathaway WE, Manco-Johnson MJ (2011) Simultaneous thrombin and plasmin generation capacities in normal and abnormal states of coagulation and fibrinolysis in children and adults. Thromb Res 127(4):317–323. https://doi.org/10.1016/j.thromres.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  49. Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, Lecompte T, Beguin S (2003) Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 33(1):4–15. https://doi.org/10.1159/000071636

    Article  CAS  PubMed  Google Scholar 

  50. Kato H, Adachi N, Ohno Y, Iwanaga S, Takada K, Sakakibara S (1980) New fluorogenic peptide substrates for plasmin. J Biochem 88(1):183–190

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All Experimental work was conducted under the FDA Research Involving Human Subjects Committee’s (RIHSC) approval, RIHSC protocol #03-120B.

Funding

This work was funded by the US FDA Office of Women’s Health. Dr. I. Tarandovskiy is grateful to the Oak Ridge Institute for Science and Education (ORISE) for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan D. Tarandovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarandovskiy, I.D., Rajabi, A.A., Karnaukhova, E. et al. Contradictory to its effects on thrombin, C1-inhibitor reduces plasmin generation in the presence of thrombomodulin. J Thromb Thrombolysis 48, 81–87 (2019). https://doi.org/10.1007/s11239-019-01869-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-019-01869-y

Keywords

Navigation