Skip to main content
Log in

Prediction of different antibacterial activity in a new set of formyl hydroxyamino derivatives with potent action on peptide deformylase using structural information

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Due to the essential role of peptide deformylase (PDF) at the bacterial growth cycle, it is a noteworthy target for developing a novel antibacterial agent. In the current study, the antibacterial activities of a set of 44 new structures of formyl hydroxyamino derivatives as PDF inhibitors were quantified using quantitative structure–activity relationship (QSAR). Artificial neural networks (ANN) were used as a chemometrics tool for QSAR modeling. Three quantitative models were suggested to relate the chemical structural features of the formyl hydroxyamino derivatives to their antibacterial activities (pIC50) against Staphylococcus aureus, methicillin-susceptible S. aureus (MSSA), and methicillin-resistant S. aureus (MRSA) peptide deformylase. The sufficiency of the model for prediction of the antibacterial activities of the desired PDF inhibitor compounds against S. aureus, MSSA, and MRSA was statistically demonstrated according to the validation parameters such as coefficient of determination (R2), mean square error (MSE) in training, validation, and prediction sets, and also using applicability domain (AD) and randomization test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meinnel T, Mechulam Y, Blanquet S (1993) Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75:1061–1075. https://doi.org/10.1016/0300-9084(93)90005-D

    Article  CAS  PubMed  Google Scholar 

  2. Yuan Z, Trias J, White RJ (2001) Deformylase as a novel antibacterial target. Drug Discov Today 6:954–961. https://doi.org/10.1016/S1359-6446(01)01925-0

    Article  CAS  PubMed  Google Scholar 

  3. Waller AS, Clements JM (2002) Novel approaches to antimicrobial therapy: peptide deformylase. Curr Opin Drug Discov Devel 5:785–792

    CAS  PubMed  Google Scholar 

  4. Ni H, Wendoloski J (2006) Structure-based design of new antibacterial agents. Annu Rep Comput Chem 2:279–295

  5. Lee JY, Doddareddy MR, Cho YS et al (2007) Comparative QSAR studies on peptide deformylase inhibitors. J Mol Model 13:543–558. https://doi.org/10.1007/s00894-007-0175-x

    Article  CAS  PubMed  Google Scholar 

  6. Rajagopalan PTR, Yu XC, Pei D (1997) Peptide deformylase: a new type of mononuclear iron protein. J Am Chem Soc 119:12418–12419. https://doi.org/10.1021/ja9734096

    Article  CAS  Google Scholar 

  7. Yang S, Shi W, Xing D et al (2014) Synthesis, antibacterial activity, and biological evaluation of formyl hydroxyamino derivatives as novel potent peptide deformylase inhibitors against drug-resistant bacteria. Eur J Med Chem 86:133–152. https://doi.org/10.1016/j.ejmech.2014.07.106

    Article  CAS  PubMed  Google Scholar 

  8. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152:21–37. https://doi.org/10.1038/sj.bjp.0707306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai J, Han C, Hu T et al (2006) Peptide deformylase is a potential target for anti- Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Sci 15:2071–2081. https://doi.org/10.1110/ps.062238406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yousefinejad S, Hemmateenejad B (2015) Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst 149:177–204. https://doi.org/10.1016/j.chemolab.2015.06.016

    Article  CAS  Google Scholar 

  11. Pirhadi S, Shiri F, Ghasemi JB (2015) Multivariate statistical analysis methods in QSAR. RSC Adv 5:104635–104665. https://doi.org/10.1039/C5RA10729F

    Article  CAS  Google Scholar 

  12. Veselinović JB, Đorđević V, Bogdanović M et al (2018) QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bacteria. Struct Chem 29:541–551. https://doi.org/10.1007/s11224-017-1051-7

    Article  CAS  Google Scholar 

  13. Kovesdi I, Dominguez-Rodriguez MF, Orfi L et al (1999) Application of neural networks in structure-activity relationships. Med Res Rev 19:249–269. https://doi.org/10.1002/(SICI)1098-1128(199905)19:3<249::AID-MED4>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  14. Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5–14. https://doi.org/10.1016/S0097-8485(01)00094-8

    Article  CAS  PubMed  Google Scholar 

  15. Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800–806. https://doi.org/10.1021/ci050022a

    Article  CAS  PubMed  Google Scholar 

  16. Gupta MK, Mishra P, Prathipati P, Saxena AK (2002) 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Bioorg Med Chem 10:3713–3716. https://doi.org/10.1016/S0968-0896(02)00421-2

    Article  CAS  PubMed  Google Scholar 

  17. Gao J, Cheng Y, Cui W et al (2012) 3D-QSAR and molecular docking studies of hydroxamic acids as peptide deformylase inhibitors. Med Chem Res 21:1597–1610. https://doi.org/10.1007/s00044-011-9672-7

    Article  CAS  Google Scholar 

  18. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, Second. WILEY-VCH, Weinheim

    Book  Google Scholar 

  19. Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an easy approach to molecular descriptor calculations. MATCH Commun Math Comput Chem 56:237–248

    CAS  Google Scholar 

  20. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12. https://doi.org/10.1021/ci0342472

    Article  CAS  PubMed  Google Scholar 

  21. Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5:231–243. https://doi.org/10.1023/A:1021372108686

    Article  CAS  Google Scholar 

  22. Gramatica P (2014) External evaluation of QSAR models, in addition to cross-validation: verification of predictive capability on totally new chemicals. Mol Inform 33:311–314. https://doi.org/10.1002/minf.201400030

    Article  CAS  PubMed  Google Scholar 

  23. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. https://doi.org/10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  24. Netzeva TI, Worth AP, Aldenberg T et al (2005) Current status of methods for defining the applicability domain of ( quantitative ) structure – activity relationships. ATLA 2:1–19

    Google Scholar 

  25. Dimitrov S, Dimitrova G, Pavlov T et al (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839–849. https://doi.org/10.1021/ci0500381

    Article  CAS  PubMed  Google Scholar 

  26. Yousefinejad S, Honarasa F, Montaseri H (2015) Linear solvent structure-polymer solubility and solvation energy relationships to study conductive polymer/carbon nanotube composite solutions. RSC Adv 5:42266–42275. https://doi.org/10.1039/C5RA05930E

    Article  CAS  Google Scholar 

  27. Jagiello K, Makurat S, Pereć S et al (2018) Molecular features of thymidine analogues governing the activity of human thymidine kinase. Struct Chem 29:1367–1374. https://doi.org/10.1007/s11224-018-1124-2

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by Shiraz University of Medical Sciences (grant no. 97-01-42-17151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Yousefinejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefinejad, S., Mahboubifar, M. & Rasekh, S. Prediction of different antibacterial activity in a new set of formyl hydroxyamino derivatives with potent action on peptide deformylase using structural information. Struct Chem 30, 925–936 (2019). https://doi.org/10.1007/s11224-018-1242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1242-x

Keywords

Navigation