Skip to main content

Advertisement

Log in

Cabergoline reduces cell viability in non functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Dopamine (DA) therapy of non-functioning pituitary adenomas (NFA) can result in tumor stabilization and shrinkage. However, the mechanism of action is still unknown. Previous evidence showed that DA can inhibit pituitary vascular endothelial growth factor expression (VEGF), that may be involved in pituitary tumor growth. The aim of our study was to clarify whether VEGF secretion modulation might mediate the effects of DA agonists on cell proliferation in human NFA. We assessed DA receptor subtype 2 (DR2) expression in 20 NFA primary cultures, where we also investigated the effects of a selective DR2 agonist, cabergoline (Cab), on VEGF secretion and on cell viability. All NFA samples expressed α-subunit and DR2 was expressed in 11 samples. In DR2 expressing tumors, Cab significantly reduced cell viability (−25%; P < 0.05) and VEGF secretion (−20%; P < 0.05). These effects were counteracted by treatment with the DA antagonist sulpiride. Cab antiproliferative effects were blocked by VEGF. Our data demonstrate that Cab, via DR2, inhibits cell viability also by reducing VEGF secretion in a selected group of NFA, supporting that DA agonists can be useful in the medical therapy of DR2 expressing NFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22:724–763

    Article  PubMed  CAS  Google Scholar 

  2. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  3. Adams EF, Ashby MJ, Brown SM, White MC, Mashiter K (1981) Bromocriptine suppresses ACTH secretion from human pituitary tumour cells in culture by a dopaminergic mechanism. Clin Endocrinol (Oxf) 15:479–484

    Article  CAS  Google Scholar 

  4. Yin D, Kondo S, Takeuchi J, Morimura T (1994) Induction of apoptosis in murine ACTH-secreting pituitary adenoma cells by bromocriptine. FEBS Lett 339:73–75

    Article  PubMed  CAS  Google Scholar 

  5. Bevan JS, Burke CW (1986) Non-functioning pituitary adenomas do not regress during bromocriptine therapy but possess membrane-bound dopamine receptors which bind bromocriptine. Clin Endocrinol 25:561–572

    Article  CAS  Google Scholar 

  6. Renner U, Arzberger T, Pagotto U, Leimgruber S, Uhl E, Muller A, Lange M, Weindl A, Stalla GK (1998) Heterogenous dopamine D2 receptor subtype messenger ribonucleic acid expression in clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 83:1368–1375

    Article  PubMed  CAS  Google Scholar 

  7. Pivonello R, Matrone C, Filippella M, Cavallo LM, Di Somma C, Cappabianca P, Colao A, Annunziato L, Lombardi G (2004) Dopamine receptor expression and function in clinically nonfunctioning pituitary tumors: comparison with the effectiveness of cabergoline treatment. J Clin Endocrinol Metab 89:1674–1683

    Article  PubMed  CAS  Google Scholar 

  8. Ferone D, Lastoria S, Colao A, Varrella P, Cerbone G, Acampa W, Merola B, Salvatore M, Lombardi G (1998) Correlation of scintigraphic results using 123I-Methoxybenzamide with hormone levels and tumor size response to quinagolide in patients with pituitary adenomas. J Clin Endocrinol Metab 83:248–252

    Article  PubMed  CAS  Google Scholar 

  9. Colao A, Di Somma C, Pivonello R, Faggiano A, Lombardi G, Savastano S (2008) Medical treatment for clinically non-functioning pituitary adenomas. Endocr Relat Cancer 15:905–915

    Article  PubMed  CAS  Google Scholar 

  10. Chanson P, Brochier S (2005) Non-functioning pituitary adenomas. J Endocrinol Invest 28:93–99

    PubMed  CAS  Google Scholar 

  11. Greenman Y, Tordjman K, Osher E, Veshchev I, Shenkerman G, Reider-Groswasser II, Segev Y, Ouaknine G, Stern N (2005) Postoperative treatment of clinically nonfunctioning pituitary adenomas with dopamine agonists decreases tumor remnant growth. Clin Endocrinol (Oxf) 63:39–44

    Article  CAS  Google Scholar 

  12. Greenman Y, Stern N (2009) Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:625–638

    Article  PubMed  CAS  Google Scholar 

  13. Zatelli MC, Piccin D, Vignali C, Tagliati F, Ambrosio MR, Bondanelli M, Cimino V, Bianchi A, Schmid HA, Scanarini M, Pontecorvi A, De Marinis L, Maira G, degli Uberti EC (2007) Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr Relat Cancer 14:91–102

    Article  PubMed  CAS  Google Scholar 

  14. Ochoa AL, Mitchner NA, Paynter CD, Morris RE, Ben-Jonathan N (2000) Vascular endothelial growth factor in the rat pituitary: differential distribution and regulation by estrogen. J Endocrinol 165:483–492

    Article  PubMed  CAS  Google Scholar 

  15. Vidal S, Lloyd RV, Moya L, Scheithauer BW, Kovacs K (2002) Expression and distribution of vascular endothelial growth factor receptor Flk-1 in the rat pituitary. J Histochem Cytochem 50:533–540

    Article  PubMed  CAS  Google Scholar 

  16. Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR (2000) Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol 16:253–260

    PubMed  CAS  Google Scholar 

  17. Kim K, Yoshida D, Teramoto A (2005) Expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol 16:115–121

    Article  PubMed  CAS  Google Scholar 

  18. Onofri C, Carbia Nagashima A, Schaaf L, Feirer M, Lohrer P, Stummer W, Berner S, Chervin A, Goldberg V, Stalla GK (2004) Estradiol stimulates vascular endothelial growth factor and interleukin-6 in human lactotroph and lactosomatotroph pituitary adenomas. Exp Clin Endocrinol Diabetes 112:18–23

    Article  PubMed  CAS  Google Scholar 

  19. Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L (1999) Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 10:229–235

    Article  PubMed  CAS  Google Scholar 

  20. McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, Hussain S, Sheppard MC, Franklyn JA, Gittoes NJL (2002) Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 87:4238–4244

    Article  PubMed  CAS  Google Scholar 

  21. Cristina C, Dıaz-Torga G, Baldi A, Gongola A, Rubinstein M, Low MJ, Becu-Villalobos D (2005) Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology 146:2952–2962

    Article  PubMed  CAS  Google Scholar 

  22. Zatelli MC, Piccin D, Tagliati F, Ambrosio MR, Margutti A, Padovani R, Scanarini M, Culler MD, degli Uberti EC (2003) Somatostatin receptor subtype 1 selective activation in human growth hormone- and prolactin-secreting pituitary adenomas: effects on cell viability, growth hormone and prolactin secretion. J Clin Endocrinol Metab 88:2797–2802

    Article  PubMed  CAS  Google Scholar 

  23. Danila D, Sleiman Haidar JN, Zhang X, Katznelson L, Culler MD, Klibanski A (2001) Somatostatin receptor specific analogs: effects on cell proliferation and growth hormone secretion in human somatotroph tumors. J Clin Endocrinol Metab 86:2976–2981

    Article  PubMed  CAS  Google Scholar 

  24. Zatelli MC, Piccin D, Bottoni A, Ambrosio MR, Margutti A, Padovani R, Scanarini M, Taylor JE, Culler MD, Cavazzini L, degli Uberti EC (2004) Evidence for differential effects of selective somatostatin receptor subtype agonists on alpha subunit and chromogranin a secretion and on cell viability in human nonfunctioning pituitary adenomas in vitro. J Clin Endocrinol Metab 89:5181–5188

    Article  PubMed  CAS  Google Scholar 

  25. Freda PU, Beckers AM, Katznelson L, Molitch ME, Montori VE, Post KD, Vance ML (2011) Pituitary incidentaloma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:894–904

    Article  PubMed  CAS  Google Scholar 

  26. Turner HE, Stratton IM, Byrne JV, Adams CB, Wass JA (1999) Audit of selected patients with nonfunctioning pituitary adenomas treated without irradiation—a follow-up study. Clin Endocrinol (Oxf) 51:281–284

    Article  CAS  Google Scholar 

  27. Park P (2004) The role of radiation therapy after surgical resection of nonfunctional pituitary macroadenomas. Neurosurgery 55:100–106

    Article  PubMed  Google Scholar 

  28. Greenman Y, Ouaknine G, Veshchev I, Reider-Groswasser II, Segev Y, Stern N (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumor quiescence and regrowth. Clin Endocrinol (Oxf) 58:763–769

    Article  CAS  Google Scholar 

  29. Reddy R, Cudlip S, Byrne JV, Karavitaki N, Wass JA (2011) Can we ever stop imaging in surgically treated and radiotherapy-naive patients with non-functioning pituitary adenoma? Eur J Endocrinol 165:739–744

    Article  PubMed  CAS  Google Scholar 

  30. Karavitaki N, Collison K, Halliday J, Byrne JV, Price P, Cudlip S, Wass JA (2007) What is the natural history of nonoperated nonfunctioning pituitary adenomas? Clin Endocrinol (Oxf) 67:938–943

    Article  CAS  Google Scholar 

  31. Greenman Y (2007) Dopaminergic treatment of nonfunctioning pituitary adenomas. Nat Clin Pract Endocrinol Metab 3:95–101

    Article  Google Scholar 

  32. Florio T, Barbieri F, Spaziante R (2008) Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr Relat Cancer 15:583–596

    Article  PubMed  CAS  Google Scholar 

  33. Peverelli E, Olgiati L, Locatelli M, Magni P, Fustini MF, Frank G, Mantovani G, Beck-Peccoz P, Spada A, Lania A (2010) The dopamine-somatostatin chimeric compound BIM-23A760 exerts antiproliferative and cytotoxic effects in human non-functioning pituitary tumors by activating ERK1/2 and p38 pathways. Cancer Lett 28(288):170–176

    Article  Google Scholar 

  34. Niveiro M, Aranda FI, Peiró G, Alenda C, Picó A (2005) Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol 36:1090–1095

    Article  PubMed  CAS  Google Scholar 

  35. Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E, Stalla GK, Renner U (2006) Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol 191:249–261

    Article  PubMed  CAS  Google Scholar 

  36. Korsisaari N, Ross J, Wu X, Kowanetz M, Pal N, Hall L, Eastham-Anderson J, Forrest WF, Van Bruggen N, Peale FV, Ferrara N (2008) Blocking vascular endothelial growth factor-a inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res 14:249–258

    Article  PubMed  CAS  Google Scholar 

  37. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–570

    Article  PubMed  CAS  Google Scholar 

  38. Luque GM, Perez-Millán MI, Ornstein AM, Cristina C, Becu-Villalobos D (2011) Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J Pharmacol Exp Ther 337:766–774

    Article  PubMed  CAS  Google Scholar 

  39. Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E, Kovacs K (2011) Anti-VEGF therapy in pituitary carcinoma. Pituitary. Sep 15. [Epub ahead of print]

Download references

Acknowledgments

This work was supported by grants from the Italian Ministry of University and Scientific and Technological Research, Fondazione Cassa di Risparmio di Ferrara, Associazione Ferrarese dell’Ipertensione Arteriosa, and Associazione Italiana per la Ricerca sul Cancro (AIRC) in collaboration with Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chiara Zatelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliano, T., Filieri, C., Minoia, M. et al. Cabergoline reduces cell viability in non functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Pituitary 16, 91–100 (2013). https://doi.org/10.1007/s11102-012-0380-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-012-0380-1

Keywords

Navigation