Skip to main content

Advertisement

Log in

Hypoxia-Inducible Vascular Endothelial Growth Factor Gene Therapy Using the Oxygen-Dependent Degradation Domain in Myocardial Ischemia

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease.

Methods

Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson’s trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively.

Results

The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments).

Conclusion

An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther. 2003;10:285–91.

    Article  CAS  PubMed  Google Scholar 

  2. Isner JM. Myocardial gene therapy. Nature. 2002;415:234–9.

    Article  CAS  PubMed  Google Scholar 

  3. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther. 1996;7:959–88.

    Article  CAS  PubMed  Google Scholar 

  4. Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, et al. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest. 1996;97:469–76.

    Article  CAS  PubMed  Google Scholar 

  5. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell. 1998;2:549–58.

    Article  CAS  PubMed  Google Scholar 

  6. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93:662–70.

    Article  CAS  PubMed  Google Scholar 

  7. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000;102:898–901.

    CAS  PubMed  Google Scholar 

  8. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 2003;10:1535–42.

    Article  CAS  PubMed  Google Scholar 

  9. Lee M, Bikram M, Oh S, Bull DA, Kim SW. Sp1-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. Pharm Res. 2004;21:736–41.

    Article  CAS  PubMed  Google Scholar 

  10. Lee M, Lee ES, Kim YS, Choi BH, Park SR, Park HS, et al. Ischemic injury-specific gene expression in the rat spinal cord injury model using hypoxia-inducible system. SPINE. 2005;30:2729–34.

    Article  PubMed  Google Scholar 

  11. Choi D, Lee M, Bull DA, Reiss R, Chang CW, Christensen L, et al. Hypoxia-inducible VEGF gene therapy using the RTP801 promoter. Mol Ther. 2004;9:S74–5.

    Google Scholar 

  12. Su H, Arakawa-Hoyt J, Kan YW. Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci USA. 2002;99:9480–5.

    Article  CAS  PubMed  Google Scholar 

  13. Lee M, Choi D, Choi MJ, Jeong JH, Kim WJ, Oh S, et al. Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. J Control Release. 2006;115:113–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304–8.

    Article  CAS  PubMed  Google Scholar 

  15. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–62.

    Article  CAS  PubMed  Google Scholar 

  16. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol. 2000;203:1253–63.

    CAS  PubMed  Google Scholar 

  17. Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L, Nikinmaa M. Characterization of a hypoxia-inducible factor (HIF-1alpha ) from rainbow trout: accumulation of protein occurs at normal venous oxygen tension. J Biol Chem. 2001;276:19699–705.

    Article  CAS  PubMed  Google Scholar 

  18. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13:167–71.

    Article  CAS  PubMed  Google Scholar 

  19. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998;95:7987–92.

    Article  CAS  PubMed  Google Scholar 

  20. Wang F, Sekine H, Kikuchi Y, Takasaki C, Miura C, Heiwa O, et al. HIF-1alpha-prolyl hydroxylase: molecular target of nitric oxide in the hypoxic signal transduction pathway. Biochem Biophys Res Commun. 2002;295:657–62.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12.

    PubMed  Google Scholar 

  22. Koshikawa N, Takenaga K. Hypoxia-regulated expression of attenuated diphtheria toxin A fused with hypoxia-inducible factor-1alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res. 2005;65:11622–30.

    Article  CAS  PubMed  Google Scholar 

  23. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system. Hypertension. 2004;43:746–51.

    Article  CAS  PubMed  Google Scholar 

  24. Kim HA, Kim K, Kim SW, Lee M. Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J Control Release. 2007;121:218–24.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang B, Dong H, Zhang Z, Wang W, Zhang Y, Xu X. Hypoxic response elements control expression of human vascular endothelial growth factor(165) genes transferred to ischemia myocardium in vivo and in vitro. J Gene Med. 2007;9:788–96.

    Article  CAS  PubMed  Google Scholar 

  26. Harada H, Hiraoka M, Kizaka-Kondoh S. Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res. 2002;62:2013–8.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by grants from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A085136); a faculty research grant of Yonsei University College of Medicine for 2009 (8-2009-0187); and the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (20090065404 and 20090081874).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Hwa Kim or Donghoon Choi.

Additional information

Hyun Ah Kim and Soyeon Lim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.A., Lim, S., Moon, HH. et al. Hypoxia-Inducible Vascular Endothelial Growth Factor Gene Therapy Using the Oxygen-Dependent Degradation Domain in Myocardial Ischemia. Pharm Res 27, 2075–2084 (2010). https://doi.org/10.1007/s11095-010-0206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0206-7

KEY WORDS

Navigation