Skip to main content

Advertisement

Log in

Intestinal Absorption of Miltefosine: Contribution of Passive Paracellular Transport

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to characterize the transepithelial transport of miltefosine (HePC), the first orally effective drug against visceral leishmaniasis, across the intestinal barrier to further understand its oral absorption mechanism.

Materials and Methods

Caco-2 cell monolayers were used as an in vitro model of the human intestinal barrier. The roles of active and passive mechanisms in HePC intestinal transport were investigated and the relative contributions of the transcellular and paracellular routes were estimated.

Results

HePC transport was observed to be pH-independent, partially temperature-dependent, linear as a function of time and non-saturable as a function of concentration. The magnitude of HePC transport was quite similar to that of the paracellular marker mannitol, and EDTA treatment led to an increase in HePC transport. Furthermore, HePC transport was found to be similar in the apical-to-basolateral and basolateral-to-apical directions, strongly suggesting that HePC exhibits non-polarized transport and that no MDR-mediated efflux was involved.

Conclusions

These results demonstrate that HePC crosses the intestinal epithelium by a non-specific passive pathway and provide evidence supporting a concentration-dependent paracellular transport mechanism, although some transcellular diffusion cannot be ruled out. Considering that HePC opens epithelial tight junctions, this study shows that HePC may promote its own permeation across the intestinal barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

apical

APC:

alkylphosphocholine

BL:

basolateral

HePC:

hexadecylphosphocholine (miltefosine)

P app :

apparent permeability coefficient

P-gp:

P-glycoprotein

References

  1. S. Sundar, F. Rosenkaimer, M. K. Makharia, A. K. Goyal, A. K. Mandal, A. Voss, P. Hilgard, and H. W. Murray. Trial of oral miltefosine for visceral leishmaniasis. Lancet. 352:1821–1823 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. S. Sundar, and H. W. Murray. Availability of miltefosine for the treatment of kala-azar in India. Bull. World Health Organ. 83:394–395 (2005).

    PubMed  Google Scholar 

  3. S. Sundar, T. K. Jha, C. P. Thakur, J. Engel, H. Sindermann, C. Fischer, K. Junge, A. Bryceson, and J. Berman. Oral miltefosine for Indian visceral leishmaniasis. N. Engl. J. Med. 347:1739–1746 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. A. Breiser, D. J. Kim, E. Fleer, W. Damenz, A. Drube, M. Berger, G. Nagel, H. Eibl, and C. Unger. Distribution and metabolism of hexadecylphosphocholine in mice. Lipids. 22:925–926 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. N. Marschner, J. Kötting, H. Eibl, and C. Unger. Distribution of hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine in rat tissues during steady-state treatment. Cancer Chemother. Pharmacol. 31:18–22 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. J. Kotting, N. W. Marschner, W. Neumuller, C. Unger, and H. Eibl. Hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine: a comparison of hemolytic activity, serum binding and tissue distribution. Prog. Exp. Tumor Res. 34:131–142 (1992).

    PubMed  CAS  Google Scholar 

  7. I. Rey Gomez-Serranillos, J. Minones Jr, P. Dynarowicz-Latka, E. Iribarnegaray, and M. Casas. Study of the p-A isotherms of miltefosine monolayers spread at the air/water interface. Phys. Chem. Chem. Phys. 6:1580–1586 (2004).

    Article  CAS  Google Scholar 

  8. C. Matos, H. Chaimovich, J. L. Lima, I. M. Cuccovia, and S. Reis. Effect of liposomes on the rate of alkaline hydrolysis of indomethacin and acemetacin. J. Pharm. Sci. 90:298–309 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. P. S. De Araujo, M. Y. Rosseneu, J. M. Kremer, E. J. van Zoelen, and G. H. de Haas. Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles. Biochemistry. 18:580–586 (1979).

    Article  PubMed  Google Scholar 

  10. J. Kotting, N. W. Marschner, C. Unger, and H. Eibl. Determination of alkylphosphocholines and of alkyl-glycero-phosphocholines in biological fluids and tissues. Prog. Exp. Tumor Res. 34:6–11 (1992).

    PubMed  CAS  Google Scholar 

  11. D. R. Hoffman, L. H. Hoffman, and F. Snyder. Cytotoxicity and metabolism of alkyl phospholipid analogues in neoplastic cells. Cancer Res. 46:5803–5809 (1986).

    PubMed  CAS  Google Scholar 

  12. W. J. Van Blitterswijk, H. Hilkmann, and G. A. Storme. Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids. 22:820–823 (1987).

    Article  PubMed  Google Scholar 

  13. F. J. Perez-Victoria, F. Gamarro, M. Ouellette, and S. Castanys. Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J. Biol. Chem. 278:49965–49971 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96:736–749 (1989).

    PubMed  CAS  Google Scholar 

  16. C. C. Geilen, A. Samson, T. Wieder, H. Wild, and W. Reutter. Synthesis of hexadecylphospho[methyl-14C]-choline. J. Labelled Compd. Radiopharm. 31:1071–1076 (1992).

    Article  CAS  Google Scholar 

  17. H. Eibl, and P. Woolley. A general synthetic method for enantiomerically pure ester and ether lysophospholipids. Chem. Phys. Lipids. 47:63–68 (1988).

    Article  CAS  Google Scholar 

  18. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65:55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. T. Decker, and M. L. Lohmann-Matthes. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 115:61–69 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. C. Ménez, M. Buyse, H. Chacun, R. Farinotti, and G. Barratt. Modulation of intestinal barrier properties by miltefosine. Biochem. Pharmacol. 71:486–496 (2006).

    Article  PubMed  Google Scholar 

  21. B. L. Clarke, and P. H. Weigel. Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. ATP depletion blocks receptor recycling but not a single round of endocytosis. J. Biol. Chem. 260:128–133 (1985).

    PubMed  CAS  Google Scholar 

  22. P. Artursson, and C. Magnusson. Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 79:595–600 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. L. S. Gan, P. H. Hsyu, J. F. Pritchard, and D. Thakker. Mechanism of intestinal absorption of ranitidine and ondansetron: transport across Caco-2 cell monolayers. Pharm. Res. 10:1722–1725 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. V. Pade, and S. Stavchansky. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm. Res. 14: 1210–1215 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. A. Tsuji, H. Takanaga, I. Tamai, and T. Terasaki. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Pharm. Res. 11: 30–37 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. M. E. Cavet, M. West, and N. L. Simmons. Transepithelial transport of the fluoroquinolone ciprofloxacin by human airway epithelial Calu-3 cells. Antimicrob. Agents Chemother. 41:2693–2698 (1997).

    PubMed  CAS  Google Scholar 

  27. P. Artursson, A. L. Ungell, and J. E. Lofroth. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 10:1123–1129 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. L. S. Gan, T. Niederer, C. Eads, and D. Thakker. Evidence for predominantly paracellular transport of thyrotropin-releasing hormone across Caco-2 cell monolayers. Biochem. Biophys. Res. Commun. 197:771–777 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. I. J. Hidalgo, and R. T. Borchardt. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta. 1035:97–103 (1990).

    PubMed  CAS  Google Scholar 

  30. M. Rybczynska, R. Liu, P. Lu, F. J. Sharom, E. Steinfels, A. D. Pietro, M. Spitaler, H. Grunicke, and J. Hofmann. MDR1 causes resistance to the antitumour drug miltefosine. Br. J. Cancer. 84:1405–1411 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. H. M. Said, A. Ortiz, and T. Y. Ma. A carriermediated mechanism for pyridoxine uptake by human intestinal epithelial Caco2 cells: regulation by a PKAmediated pathway. Am. J. Physiol. Cell Physiol. 285:C1219–1225 (2003).

    PubMed  CAS  Google Scholar 

  32. A. Leroy, G. K. de Bruyne, L. C. Oomen, and M. M. Mareel. Alkylphospholipids reversibly open epithelial tight junctions. Anticancer Res. 23:27–32 (2003).

    PubMed  CAS  Google Scholar 

  33. P. D. Ward, H. Ouyang, and D. R. Thakker. Role of phospholipase C-beta in the modulation of epithelial tight junction permeability. J. Pharmacol. Exp. Ther. 304:689–698 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. D. Z. Liu, E. L. LeCluyse, and D. R. Thakker. Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers. J. Pharm. Sci. 88:1161–1168 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. A. Amelsberg, C. D. Schteingart, J. Stein, W. J. Simmonds, G. A. Sawada, N. F. Ho, and A. F. Hofmann. Intestinal absorption of sodium dodecyl sulfate in the rodent: evidence for paracellular absorption. Am. J. Physiol. 272:G498–506 (1997).

    PubMed  CAS  Google Scholar 

  36. D. E. Leahy, J. Lynch, R. E. Finney, and D. C. Taylor. Estimation of sieving coefficients of convective absorption of drugs in perfused rat jejunum. J. Pharmacokinet. Biopharm. 22:411–429 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. H. N. Nellans. Mechanisms of peptide and protein absorption : (1) Paracellular intestinal transport: modulation of absorption. Adv. Drug Deliv. Rev. 7:339–364 (1991).

    Article  CAS  Google Scholar 

  38. J. R. Pappenheimer, M. L. Karnovsky, and J. E. Maggio. Absorption and excretion of undegradable peptides: role of lipid solubility and net charge. J. Pharmacol. Exp. Ther. 280:292–300 (1997).

    PubMed  CAS  Google Scholar 

  39. V. Pade, and S. Stavchansky. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci. 87:1604–1607 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. E. Biganzoli, L. A. Cavenaghi, R. Rossi, M. C. Brunati, and M. L. Nolli. Use of a Caco-2 cell culture model for the characterization of intestinal absorption of antibiotics. Il Farmaco. 54:594–599 (1999).

    Article  PubMed  CAS  Google Scholar 

  42. K. M. Hillgren, A. Kato, and R. T. Borchardt. In vitro systems for studying intestinal drug absorption. Med. Res. Rev. 15:83–109 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. J. Berman. Miltefosine to treat leishmaniasis. Expert Opin. Pharmacother. 6:1381–1388 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. B. Arnold, R. Reuther, and H. U. Weltzien. Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim. Biophys. Acta. 530:47–55 (1978).

    PubMed  CAS  Google Scholar 

  45. P. K. Hanson, L. Malone, J. Birchmore, and J. Nichols. Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J. Biol. Chem. 278:36041–36050 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. F. J. Perez-Victoria, S. Castanys, and F. Gamarro. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob. Agents Chemother. 47:2397–2403 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. E. E. Kelley, E. J. Modest, and C. P. Burns. Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem. Pharmacol. 45:2435–2439 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. F. Uberall, H. Oberhuber, K. Maly, J. Zaknun, L. Demuth, and H. H. Grunicke. Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res. 51:807–812 (1991).

    PubMed  CAS  Google Scholar 

  49. E. C. Heesbeen, G. Rijksen, H. G. van Heugten, and L. F. Verdonck. Influence of serum levels on leukemic cell destruction by the ether lipid ET-18-OCH3. Leuk. Res. 19:417–425 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Hélène Chacun for valuable help with radioactivity studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Barratt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ménez, C., Buyse, M., Dugave, C. et al. Intestinal Absorption of Miltefosine: Contribution of Passive Paracellular Transport. Pharm Res 24, 546–554 (2007). https://doi.org/10.1007/s11095-006-9170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9170-7

Key words

Navigation