Skip to main content
Log in

Alpha-Synuclein Toxicity on Protein Quality Control, Mitochondria and Endoplasmic Reticulum

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by the presence of insoluble protein clusters containing α-synuclein. Impairment of mitochondria, endoplasmic reticulum, autophagy and intracellular trafficking proper function has been suggested to be caused by α-synuclein toxicity, which is also associated with the higher levels of ROS found in the aged brain and in PD. Oxidative stress leads to protein oligomerization and aggregation that impair autophagy and mitochondrial dynamics leading to a vicious cycle of organelles damage and neurodegeneration. In this review we focused on the role of α-synuclein dysfunction as a cellular stressor that impairs mitochondria, endoplasmic reticulum, autophagy and cellular dynamics culminating with dopaminergic depletion and the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223–236; (discussion 222)

    PubMed  Google Scholar 

  2. Mhyre TR, Boyd JT, Hamill RW, Maguire-Zeiss KA (2012) Parkinson’s disease. Subcell Biochem 65:389–455

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124:901–905

    Google Scholar 

  4. Weintraub D, Comella CL, Horn S (2008) Parkinson’s disease—part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 14:S40–S48

    PubMed  Google Scholar 

  5. Brundin P, Dave KD, Kordower JH (2017) Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 298:225–235

    CAS  PubMed  Google Scholar 

  6. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26:410–418

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vamvaca K, Volles MJ, Lansbury PT Jr (2009) The first N-terminal amino acids of alpha-synuclein are essential for alpha-helical structure formation in vitro and membrane binding in yeast. J Mol Biol 389:413–424

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Emamzadeh FN (2016) Alpha-synuclein structure, functions, and interactions. J Res Med Sci 21:29

    PubMed  PubMed Central  Google Scholar 

  9. Lautenschlager J, Stephens AD, Fusco G, Strohl F, Curry N, Zacharopoulou M, Michel CH, Laine R, Nespovitaya N, Fantham M, Pinotsi D, Zago W, Fraser P, Tandon A, George-Hyslop St, Rees P, Phillips E, De Simone JJ, Kaminski A, C. F. & Schierle GSK (2018) C-terminal calcium binding of alpha-synuclein modulates synaptic vesicle interaction. Nat Commun 9:712

    PubMed  PubMed Central  Google Scholar 

  10. Burre J (2015) The synaptic function of alpha-Synuclein. J Parkinsons Dis 5:699–713

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Ueda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein, J Alzheimers Dis. 6, 435–42; (discussion 443-9)

    PubMed  Google Scholar 

  12. Cartelli D, Aliverti A, Barbiroli A, Santambrogio C, Ragg EM, Casagrande FV, Cantele F, Beltramone S, Marangon J, De Gregorio C, Pandini V, Emanuele M, Chieregatti E, Pieraccini S, Holmqvist S, Bubacco L, Roybon L, Pezzoli G, Grandori R, Arnal I, Cappelletti G (2016) Alpha-synuclein is a novel microtubule dynamase. Sci Rep 6:33289

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan W, Priyadarshini M, Zakai HA, Kamal MA, Alam Q (2012) A brief overview of tyrosine hydroxylase and alpha-synuclein in the Parkinsonian brain. CNS Neurol Disord Drug Targets 11:456–462

    CAS  PubMed  Google Scholar 

  14. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    CAS  PubMed  Google Scholar 

  15. Ranjan P, Kumar A (2017) Perturbation in long-range contacts modulates the kinetics of amyloid formation in alpha-synuclein familial mutants, ACS Chem Neurosci 8:2235–2246

    CAS  PubMed  Google Scholar 

  16. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260

    CAS  PubMed  Google Scholar 

  17. Rey NL, George S, Brundin P (2016) Review: Spreading the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol 42:51–76

    CAS  PubMed  Google Scholar 

  18. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128:805–820

    Google Scholar 

  19. Mahul-Mellier AL, Vercruysse F, Maco B, Ait-Bouziad N, De Roo M, Muller D, Lashuel HA (2015) Fibril growth and seeding capacity play key roles in alpha-synuclein-mediated apoptotic cell death. Cell Death Differ 22:2107–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lazaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Krohnert K, Klucken J, Pereira MD, Popova B, Kruse N, Mollenhauer B, Rizzoli SO, Braus GH, Danzer KM, Outeiro TF (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10:e1004741

    PubMed  PubMed Central  Google Scholar 

  21. Moussa CE, Mahmoodian F, Tomita Y, Sidhu A (2008) Dopamine differentially induces aggregation of A53T mutant and wild type alpha-synuclein: insights into the protein chemistry of Parkinson’s disease. Biochem Biophys Res Commun 365:833–839

    CAS  PubMed  Google Scholar 

  22. Marmolino D, Foerch P, Atienzar FA, Staelens L, Michel A, Scheller D (2016) Alpha synuclein dimers and oligomers are increased in overexpressing conditions in vitro and in vivo. Mol Cell Neurosci 71:92–101

    CAS  PubMed  Google Scholar 

  23. Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M (2018) Potent prion-like behaviors of pathogenic alpha-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 6:29

    PubMed  PubMed Central  Google Scholar 

  24. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199

    CAS  PubMed  Google Scholar 

  25. Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24:376–391

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaves RS, Kazi AI, Silva CM, Almeida MF, Lima RS, Carrettiero DC, Demasi M, Ferrari MFR (2016) Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep 1:32–45

    PubMed  PubMed Central  Google Scholar 

  27. Dettmer U, Newman AJ, Soldner F, Luth ES, Kim NC, von Saucken VE, Sanderson JB, Jaenisch R, Bartels T, Selkoe D (2015) Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 6:7314

    PubMed  PubMed Central  Google Scholar 

  28. Dettmer U, Selkoe D, Bartels T (2016) New insights into cellular alpha-synuclein homeostasis in health and disease. Curr Opin Neurobiol 36:15–22

    CAS  PubMed  Google Scholar 

  29. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274:9843–9846

    CAS  PubMed  Google Scholar 

  30. Myohanen TT, Norrbacka S, Savolainen MH (2017) Prolyl oligopeptidase inhibition attenuates the toxicity of a proteasomal inhibitor, lactacystin, in the alpha-synuclein overexpressing cell culture. Neurosci Lett 636:83–89

    CAS  PubMed  Google Scholar 

  31. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA 110:E1817–E1826

    CAS  PubMed  Google Scholar 

  32. Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M, Koyama S, Kato T (2010) Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. J Biol Chem 285:40732–40744

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    CAS  PubMed  Google Scholar 

  34. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009357

    PubMed  PubMed Central  Google Scholar 

  35. Ottolini D, Cali T, Szabo I, Brini M (2017) Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 398:77–100

    CAS  PubMed  Google Scholar 

  36. Redmann M, Darley-Usmar V, Zhang J (2016) The role of autophagy, mitophagy and lysosomal functions in modulating bioenergetics and survival in the context of redox and proteotoxic damage: implications for neurodegenerative diseases. Aging Dis 7:150–162

    PubMed  PubMed Central  Google Scholar 

  37. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  38. Capt C, Passamonti M, Breton S (2016) The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA A DNA Mapp Seq Anal 27:3098–3101

    CAS  PubMed  Google Scholar 

  39. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    CAS  PubMed  Google Scholar 

  40. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    CAS  PubMed  Google Scholar 

  41. Arun S, Liu L, Donmez G (2016) Mitochondrial biology and neurological diseases. Curr Neuropharmacol 14:143–154

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett 589:3702–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maharjan S, Sakai Y, Hoseki J (2016) Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state. Biosci Biotechnol Biochem 80:726–734

    CAS  PubMed  Google Scholar 

  44. Arduino DM, Esteves AR, Swerdlow RH, Cardoso SM (2015) A cybrid cell model for the assessment of the link between mitochondrial deficits and sporadic Parkinson’s disease. Methods Mol Biol 1265:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Giannoccaro MP, La Morgia C, Rizzo G, Carelli V (2017) Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord 32:346–363

    PubMed  Google Scholar 

  46. Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem 80:207–218

    CAS  PubMed  Google Scholar 

  47. Choong CJ, Say YH (2011) Neuroprotection of alpha-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson’s disease mutations A30P, A53T and E46K. Neurotoxicology 32:857–863

    CAS  PubMed  Google Scholar 

  48. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    CAS  PubMed  Google Scholar 

  50. Pozo Devoto VM, Dimopoulos N, Alloatti M, Pardi MB, Saez TM, Otero MG, Cromberg LE, Marin-Burgin A, Scassa ME, Stokin GB, Schinder AF, Sevlever G, Falzone TL (2017) alphaSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease. Sci Rep 7:5042

    PubMed  PubMed Central  Google Scholar 

  51. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314:2076–2089

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bao FX, Shi HY, Long Q, Yang L, Wu Y, Ying ZF, Qin DJ, Zhang J, Guo YP, Li HM, Liu XG (2016) Mitochondrial membrane potential-dependent endoplasmic reticulum fragmentation is an important step in neuritic degeneration. CNS Neurosci Ther 22:648–660

    CAS  PubMed  Google Scholar 

  54. Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N (2016) Interaction of alpha-synuclein with biomembranes in Parkinson’s disease—role of cardiolipin. Prog Lipid Res 61:73–82

    CAS  PubMed  Google Scholar 

  55. Mironov SL, Symonchuk N (2006) ER vesicles and mitochondria move and communicate at synapses. J Cell Sci 119:4926–4934

    CAS  PubMed  Google Scholar 

  56. Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, Janssens S (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13:607–625

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–393

    CAS  PubMed  Google Scholar 

  59. Cali T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37:228–240

    CAS  PubMed  Google Scholar 

  60. Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon EA, Przedborski S (2014) Alpha-synuclein is localized to mitochondria-associated ER membranes. J Neurosci 34:249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J (2015) A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division, Elife. 4: e08828

  62. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811

    CAS  PubMed  Google Scholar 

  63. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 32:3306–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schroder M (2008) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65:862–894

    CAS  PubMed  Google Scholar 

  65. Nath S, Goodwin J, Engelborghs Y, Pountney DL (2011) Raised calcium promotes alpha-synuclein aggregate formation. Mol Cell Neurosci 46:516–526

    CAS  PubMed  Google Scholar 

  66. Oikawa T, Nonaka T, Terada M, Tamaoka A, Hisanaga S, Hasegawa M (2016) Alpha-synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J Biol Chem 291:15046–15056

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chaves RS, Melo TQ, D’Unhao AM, Farizatto KL, Ferrari MF (2013) Dynein c1h1, dynactin and syntaphilin expression in brain areas related to neurodegenerative diseases following exposure to rotenone. Acta Neurobiol Exp (Wars) 73:541–556

    Google Scholar 

  68. Melo TQ, D’Unhao A, Martins M, Farizatto SA, Chaves KL, R. S. & Ferrari MF (2013) Rotenone-dependent changes of anterograde motor protein expression and mitochondrial mobility in brain areas related to neurodegenerative diseases. Cell Mol Neurobiol 33:327–335

    CAS  PubMed  Google Scholar 

  69. Phillipson OT (2017) Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson’s disease. An integrated strategy for management. Ageing Res Rev 40:149–167

    CAS  PubMed  Google Scholar 

  70. Florenzano F (2012) Localization of axonal motor molecules machinery in neurodegenerative disorders. Int J Mol Sci 13:5195–5206

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lehmann G, Udasin RG, Ciechanover A (2016) On the linkage between the ubiquitin–proteasome system and the mitochondria. Biochem Biophys Res Commun 473:80–86

    CAS  PubMed  Google Scholar 

  72. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    CAS  Google Scholar 

  73. Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135:2058–2073

    PubMed  PubMed Central  Google Scholar 

  74. Szunyogh S, Olah J, Szenasi T, Szabo A, Ovadi J (2015) Targeting the interface of the pathological complex of alpha-synuclein and TPPP/p25. Biochim Biophys Acta 1852:2653–2661

    CAS  PubMed  Google Scholar 

  75. Fang F, Yang W, Florio JB, Rockenstein E, Spencer B, Orain XM, Dong SX, Li H, Chen X, Sung K, Rissman RA, Masliah E, Ding J, Wu C (2017) Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson’s disease. Sci Rep 7:3868

    PubMed  PubMed Central  Google Scholar 

  76. Devine MJ, Birsa N, Kittler JT (2016) Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis 90:27–34

    CAS  PubMed  Google Scholar 

  77. Fransson S, Ruusala A, Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500–510

    CAS  PubMed  Google Scholar 

  78. Mironov SL (2007) ADP regulates movements of mitochondria in neurons. Biophys J 92:2944–2952

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733

    CAS  PubMed  Google Scholar 

  80. Klosowiak JL, Focia PJ, Chakravarthy S, Landahl EC, Freymann DM, Rice SE (2013) Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro. EMBO Rep 14:968–974

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190:363–375

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30:4232–4240

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Birsa N, Norkett R, Wauer T, Mevissen TE, Wu HC, Foltynie T, Bhatia K, Hirst WD, Komander D, Plun-Favreau H, Kittler JT (2014) Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J Biol Chem 289:14569–14582

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM (2014) Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 4:130213

    PubMed  PubMed Central  Google Scholar 

  87. Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem 276:27441–27448

    CAS  PubMed  Google Scholar 

  88. Borghammer P (2018) How does parkinson’s disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord 33:48–57

    PubMed  Google Scholar 

  89. Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, Zurzolo C (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Olchowik M, Miaczynska M (2009) Effectors of GTPase Rab5 in endocytosis and signal transduction. Postepy Biochem 55:171–180

    CAS  PubMed  Google Scholar 

  91. Wegner CS, Malerod L, Pedersen NM, Progida C, Bakke O, Stenmark H, Brech A (2010) Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem Cell Biol 133:41–55

    CAS  PubMed  Google Scholar 

  92. Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ (2018) The emerging role of Rab GTPases in the pathogenesis of Parkinson’s disease. Mov Disord 33:196–207

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MFRF is supported by research grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (2011/06434-7; 2013/08028-1; 2015/18961-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merari F. R. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, T.Q., Copray, S.J.C.V.M. & Ferrari, M.F.R. Alpha-Synuclein Toxicity on Protein Quality Control, Mitochondria and Endoplasmic Reticulum. Neurochem Res 43, 2212–2223 (2018). https://doi.org/10.1007/s11064-018-2673-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2673-x

Keywords

Navigation