Skip to main content

Advertisement

Log in

Altered Metabolomic Profiles May Be Associated with Sevoflurane-Induced Neurotoxicity in Neonatal Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Experimental studies demonstrate that inhaled anesthetics can cause neurodegeneration and neurobehavioral dysfunctions. Evidence suggests changes in cerebral metabolism following inhaled anesthetics treatment can perturb cerebral homeostasis, which may be associated with their induced neurotoxicity. Seven-day-old rat pups were divided into two groups: control group (Group C) and sevoflurane group (Group S, 3 % sevoflurane exposure for 6 h). Gas chromatography–mass spectrometry (GC–MS) was used for analyzed differential metabolites of cerebral cortex in both groups, Also western blot, flow cytometry, enzymatic methods and electron microscopy were performed in various biochemical and anatomical assays. Sevoflurane exposure significantly elevated caspase-3 activation and ROS levels, decreased mitochondrial cardiolipin contents, and changed cellular ultrastructure in the cerebral cortex. Correspondingly, these results corroborated the GC–MS findings which showed altered metabolic pathways of glucose, amino acids, and lipids, as well as intracellular antioxidants and osmolyte systems in neonatal brain following prolonged exposure to high sevoflurane concentration. Our data indicate that sevoflurane anesthesia causes significant oxidative stress, neuroapoptosis, and cellular ultrastructure damage which is associated with altered brain metabotype in the neonatal rat. Our study also confirmed that GC–MS is a strategic and complementary platform for the metabolomic characterization of sevoflurane-induced neurotoxicity in the developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    CAS  PubMed  Google Scholar 

  2. Zhou ZW, Shu Y, Li M, Guo X, Pac-Soo C, Maze M, Ma D (2011) The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain. Neuroscience 174:64–70

    Article  CAS  PubMed  Google Scholar 

  3. Shen X, Liu Y, Xu S, Zhao Q, Guo X, Shen R, Wang F (2013) Early life exposure to sevoflurane impairs adulthood spatial memory in the rat. Neurotoxicology 39:45–56

    Article  CAS  PubMed  Google Scholar 

  4. Lei X, Zhang W, Liu T, Xiao H, Liang W, Xia W, Zhang J (2013) Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats. PLoS One 8:e70645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y, Xie Z (2013) Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology 118:516–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zou X, Liu F, Zhang X, Patterson TA, Callicott R, Liu S, Hanig JP, Paule MG, Slikker W Jr, Wang C (2011) Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol 33:592–597

    Article  CAS  PubMed  Google Scholar 

  7. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Zhang X, Dissen GA, Creeley CE, Olney JW (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112:834–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lenz C, Rebel A, van Ackern K, Kuschinsky W, Waschke KF (1998) Local cerebral blood flow, local cerebral glucose utilization, and flow-metabolism coupling during sevoflurane versus isoflurane anesthesia in rats. Anesthesiology 89:1480–1488

    Article  CAS  PubMed  Google Scholar 

  9. Kaisti KK, Långsjö JW, Aalto S, Oikonen V, Sipilä H, Teräs M, Hinkka S, Metsähonkala L, Scheinin H (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613

    Article  CAS  PubMed  Google Scholar 

  10. Du F, Zhu X, Zhang Y, Friedman M, Zhang N, Ugurbil K, Chen W (2008) Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA 105:6409–6414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  12. Chang KL, New LS, Mal M, Goh CW, Aw CC, Browne ER, Chan EC (2011) Metabolic profiling of 3-nitropropionic acid early-stage Huntington’s disease rat model using gas chromatography time-of-flight mass spectrometry. J Proteome Res 10:2079–2087

    Article  CAS  PubMed  Google Scholar 

  13. Makaryus R, Lee H, Yu M, Zhang S, Smith SD, Rebecchi M, Glass PS, Benveniste H (2011) The metabolomic profile during iso-flurane anesthesia differs from propofol anesthesia in the live rodent brain. J Cereb Blood Flow Metab 31:1432–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jacob Z, Li H, Makaryus R, Zhang S, Reinsel R, Lee H, Feng T, Rothman DL, Benveniste H (2012) Metabolomic profiling of children’s brains undergoing general anesthesia with sevoflurane and propofol. Anesthesiology 117:1062–1071

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Zhou W, Qiao H (2011) Bioenergetic homeostasis decides neuroprotection or neurotoxicity induced by volatile anesthetics: a uniform mechanism of dual effects. Med Hypotheses 77:223–229

    Article  CAS  PubMed  Google Scholar 

  16. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115:979–991

    Article  PubMed  Google Scholar 

  17. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8:352–361

    Article  CAS  PubMed  Google Scholar 

  18. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib—mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

    Article  CAS  PubMed  Google Scholar 

  20. Petit JM, Maftah A, Ratinaud MH, Julien R (1992) 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    Article  CAS  PubMed  Google Scholar 

  21. Gown AM, Willingham MC (2002) Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem 50:449–454

    Article  CAS  PubMed  Google Scholar 

  22. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45:643–650

    Article  CAS  PubMed  Google Scholar 

  23. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  CAS  PubMed  Google Scholar 

  24. Yildiz-Yesiloglu A, Ankerst DP (2006) Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30:969–995

    Article  CAS  PubMed  Google Scholar 

  25. Caldeira JC, Wu Y, Mameli M, Purdy RH, Li PK, Akwa Y, Savage DD, Engen JR, Valenzuela CF (2004) Fetal alcohol exposure alters neurosteroid levels in the developing rat brain. J Neurochem 90:1530–1539

    Article  CAS  PubMed  Google Scholar 

  26. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265

    Article  CAS  Google Scholar 

  27. MacGregor DG, Avshalumov MV, Rice ME (2003) Brain edema induced by in vitro ischemia: causal factors and neuroprotection. J Neurochem 85:1402–1411

    Article  CAS  PubMed  Google Scholar 

  28. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

  29. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  30. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 29:185–193

    Article  CAS  PubMed  Google Scholar 

  31. Serkova N, Christians U, Flogel U, Pfeuffer J, Leibfritz D (1997) Assessment of the mechanism of astrocyte swelling induced by the macrolide immunosuppressant sirolimus using multinuclear nuclear magnetic resonance spectroscopy. Chem Res Toxicol 10:1359–1363

    Article  CAS  PubMed  Google Scholar 

  32. Law RO (1998) The role of taurine in the regulation of brain cell volume in chronically hyponatraemic rats. Neurochem Int 33:467–472

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T, Xie Z (2010) The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem 285:4025–4037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhang J, Dong Y, Xu Z, Zhang Y, Pan C, McAuliffe S, Ichinose F, Yue Y, Liang W, Xie Z (2011) 2-Deoxy-d-glucose attenuates isoflurane-induced cytotoxicity in an in vitro cell culture model of H4 human neuroglioma cells. Anesth Analg 113:1468–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  CAS  PubMed  Google Scholar 

  36. Halliwell B (2001) Role of free radicals in neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  37. Butterfield DA (2002) Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain: a review. Free Radic Res 36:1307–1313

    Article  CAS  PubMed  Google Scholar 

  38. Yon JH, Carter LB, Reiter RJ, Jevtovic-Todorovic V (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 21:522–530

    Article  CAS  PubMed  Google Scholar 

  39. Boscolo A, Starr JA, Sanchez V, Lunardi N, DiGruccio MR, Ori C, Erisir A, Trimmer P, Bennett J, Jevtovic-Todorovic V (2012) The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: the importance of free oxygen radicals and mitochondrial integrity. Neurobio Dis 45:1031–1041

    Article  CAS  Google Scholar 

  40. Zhao X, Yang Z, Liang G, Wu Z, Peng Y, Joseph DJ, Inan S, Wei H (2013) Dual effects of isoflurane on proliferation, differentiation, and survival in human neuroprogenitor cells. Anesthesiology 118:537–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99:10237–10239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tsuji M, Allred E, Jensen F, Holtzman D (1995) Phosphocreatine and ATP regulation in the hypoxic developing rat brain. Dev Brain Res 85:192–200

    Article  CAS  Google Scholar 

  43. Clark JB (1998) N-Acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  CAS  PubMed  Google Scholar 

  44. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studiesin vivo. NeuroReport 7:1397–1400

    Article  CAS  PubMed  Google Scholar 

  45. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827

    Article  CAS  PubMed  Google Scholar 

  46. Klawitter Jelena, Gottschalk Sven, Hainz Carsten et al (2010) Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism. Chem Res Toxicol 23:608–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46:519–534

    Article  CAS  PubMed  Google Scholar 

  48. Manahan-Vaughan D, Wildförster V, Thomsen C (2008) Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur J Neurosci 28:1342–1350

    Article  PubMed  Google Scholar 

  49. Stratmann G, May LDV, Sall JW, Alvi RS, Bell JS et al (2009) Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats. Anesthesiology 110:849–861

    Article  CAS  PubMed  Google Scholar 

  50. Deng M, Hofacer RD, Jiang C, Joseph B, Hughes EA, Jia B, Danzer SC, Loepke AW (2014) Brain regional vulnerability to anaesthesia-induced neuroapoptosis shifts with age at exposure and extends into adulthood for some regions. Br J Anaesth 113:443–451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (to Jun Zhang, No. 81171020). Thanks for assistance of Biotree Biotechnology Co. Ltd (Shanghai, China) on GC–MS analysis.

Conflict of interest

Bin Liu, Yuechao Gu, Hongyan Xiao, Xi Lei, Weimin Liang and Jun Zhang reported no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Bin Liu and Yuechao Gu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gu, Y., Xiao, H. et al. Altered Metabolomic Profiles May Be Associated with Sevoflurane-Induced Neurotoxicity in Neonatal Rats. Neurochem Res 40, 788–799 (2015). https://doi.org/10.1007/s11064-015-1529-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1529-x

Keywords

Navigation