Skip to main content

Advertisement

Log in

Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-d-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  PubMed  CAS  Google Scholar 

  2. Vollala VR, Upadhya S, Nayak S (2011) Learning and memory-enhancing effect of Bacopa monniera in neonatal rats. Bratisl Lek Listy 112(12):663–669

    PubMed  CAS  Google Scholar 

  3. Vollala VR, Upadhya S, Nayak S (2011) Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats. Clinics (Sao Paulo, Brazil) 66(4):663–671

    Google Scholar 

  4. Chatterjee M, Verma P, Palit G (2010) Comparative evaluation of Bacopa monniera and Panax quniquefolium in experimental anxiety and depressive models in mice. Indian J Exp Biol 48(3):306–313

    PubMed  Google Scholar 

  5. Paulose CS, Chathu F, Khan SR, Krishnakumar A (2008) Neuroprotective role of Bacopa monnieri extract in epilepsy and effect of glucose supplementation during hypoxia: glutamate receptor gene expression. Neurochem Res 33(9):1663–1671

    Article  PubMed  CAS  Google Scholar 

  6. Mathew J, Gangadharan G, Kuruvilla KP, Paulose CS (2011) Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri. Neurochem Res 36(1):7–16

    Article  PubMed  CAS  Google Scholar 

  7. Krishnakumar A, Abraham PM, Paul J, Paulose CS (2009) Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats: therapeutic role of Bacopa monnieri extract. J Neurol Sci 284(1–2):124–128

    Article  PubMed  CAS  Google Scholar 

  8. Saraf MK, Prabhakar S, Anand A (2009) Bacopa monniera alleviates N(omega)-nitro-l-arginine arginine-induced but not MK-801-induced amnesia: a mouse Morris watermaze study. Neuroscience 160(1):149–155

    Article  PubMed  CAS  Google Scholar 

  9. Saraf MK, Prabhakar S, Anand A (2010) Neuroprotective effect of Bacopa monniera on ischemia induced brain injury. Pharmacol Biochem Behav 97(2):192–197

    Article  PubMed  CAS  Google Scholar 

  10. Saini N, Singh D, Sandhir R (2012) Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res 37(9):1928–1937

    Article  PubMed  CAS  Google Scholar 

  11. Sathyanarayanan V, Thomas T, Einother SJ, Dobriyal R, Joshi MK, Krishnamachari S (2013) Brahmi for the better? New findings challenging cognition and anti-anxiety effects of Brahmi (Bacopa monniera) in healthy adults. Psychopharmacology 227:299–306

    Article  PubMed  CAS  Google Scholar 

  12. Morgan A, Stevens J (2010) Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J Altern Complement Med 16(7):753–759

    Article  PubMed  Google Scholar 

  13. Peth-Nui T, Wattanathorn J, Muchimapura S, Tong-Un T, Piyavhatkul N, Rangseekajee P, Ingkaninan K, Vittaya-Areekul S (2012) Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid Based Complement Alternat Med 2012:606424. doi:10.1155/2012/606424

    Article  PubMed  Google Scholar 

  14. Oba A, Nakagawasai O, Onogi H, Nemoto W, Yaoita F, Arai Y, Tan-No K, Tadano T (2013) Chronic fluvoxamine treatment changes 5-HT(2A/2C) receptor-mediated behavior in olfactory bulbectomized mice. Life Sci 92(2):119–124

    Article  PubMed  CAS  Google Scholar 

  15. Morales-Medina JC, Dumont Y, Bonaventure P, Quirion R (2012) Chronic administration of the Y2 receptor antagonist, JNJ-31020028, induced anti-depressant like-behaviors in olfactory bulbectomized rat. Neuropeptides 46(6):329–334

    Article  PubMed  CAS  Google Scholar 

  16. Yamada M, Hayashida M, Zhao Q, Shibahara N, Tanaka K, Miyata T, Matsumoto K (2011) Ameliorative effects of yokukansan on learning and memory deficits in olfactory bulbectomized mice. J Ethnopharmacol 135(3):737–746. doi:10.1016/j.jep.2011.04.010

    Article  PubMed  Google Scholar 

  17. Sithisarn P, Rojsanga P, Jarikasem S, Tanaka K, Matsumoto K (2013) Ameliorative effects of Acanthopanax trifoliatus on cognitive and emotional deficits in olfactory Bulbectomized mice: an animal model of depression and cognitive deficits. Evid Based Complement Alternat Med 2013:701956. doi:10.1155/2013/701956

    Article  PubMed  Google Scholar 

  18. Bahar-Fuchs A, Chetelat G, Villemagne VL, Moss S, Pike K, Masters CL, Rowe C, Savage G (2010) Olfactory deficits and amyloid-β burden in Alzheimer’s disease, mild cognitive impairment, and healthy aging: a PiB PET study. J Alzheimers Dis 22(4):1081–1087. doi:10.3233/JAD-2010-100696

    PubMed  Google Scholar 

  19. Bahar-Fuchs A, Moss S, Rowe C, Savage G (2010) Olfactory performance in AD, aMCI, and healthy ageing: a unirhinal approach. Chem Senses 35(9):855–862. doi:10.1093/chemse/bjq094

    Article  PubMed  Google Scholar 

  20. Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30(2):505–514. doi:10.1523/JNEUROSCI.4622-09.2010

    Article  PubMed  CAS  Google Scholar 

  21. Aleksandrova IY, Kuvichkin VV, Kashparov IA, Medvinskaya NI, Nesterova IV, Lunin SM, Samokhin AN, Bobkova NV (2004) Increased level of beta-amyloid in the brain of bulbectomized mice. Biochemistry (Mosc) 69(2):176–180

    Article  CAS  Google Scholar 

  22. Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138(1):9–15

    Article  PubMed  CAS  Google Scholar 

  23. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714. doi:10.1002/jms.1777

    Article  PubMed  CAS  Google Scholar 

  24. Zhao Q, Murakami Y, Tohda M, Obi R, Shimada Y, Matsumoto K (2007) Chotosan, a Kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice. J Pharmacol Sci 103:360–373

    Article  PubMed  CAS  Google Scholar 

  25. Ouchi H, Ono K, Murakami Y, Matsumoto K (2013) Social isolation induces deficit of latent learning performance in mice: a putative animal model of attention deficit/hyperactivity disorder. Behav Brain Res 238:146–153. doi:10.1016/j.bbr.2012.10.029

    Article  PubMed  Google Scholar 

  26. Inada C, Le Thi X, Tsuneyama K, Fujiwara H, Miyata T, Matsumoto K (2013) Endogenous acetylcholine rescues NMDA-induced long-lasting hippocampal cell damage via stimulation of muscarinic M(1) receptors: elucidation using organic hippocampal slice cultures. Eur J Pharmacol 699(1–3):150–159

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Q, Matsumoto K, Tsuneyama K, Tanaka K, Li F, Shibahara N, Miyata T, Yokozawa T (2011) Diabetes-induced central cholinergic neuronal loss and cognitive deficit are attenuated by tacrine and a Chinese herbal prescription, kangen-karyu: elucidation in type 2 diabetes db/db mice. J Pharmacol Sci 117(4):230–242

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Q, Yokozawa T, Tsuneyama K, Tanaka K, Miyata T, Shibahara N, Matsumoto K (2011) Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain. Chin Med 6:33. doi:10.1186/1749-8546-6-33

    Article  PubMed  CAS  Google Scholar 

  29. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  30. Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W (2003) Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol 89(2–3):261–264

    Article  PubMed  Google Scholar 

  31. Bertaina-Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods 54(2):99–105

    Article  PubMed  CAS  Google Scholar 

  32. Saunders NL, Summers MJ (2009) Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol 32(4):350–357. doi:10.1080/13803390903042379

    Article  PubMed  Google Scholar 

  33. De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, Cattaneo A (2005) Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 102(10):3811–3816. doi:10.1073/pnas.0500195102

    Article  PubMed  Google Scholar 

  34. Dellu F, Contarino A, Simon H, Koob GF, Gold LH (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73(1):31–48

    Article  PubMed  CAS  Google Scholar 

  35. Csernansky JG, Martin M, Shah R, Bertchume A, Colvin J, Dong H (2005) Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacology 30(12):2135–2143. doi:10.1038/sj.npp.1300761

    Article  PubMed  CAS  Google Scholar 

  36. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    Article  PubMed  CAS  Google Scholar 

  37. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673

    Article  PubMed  CAS  Google Scholar 

  38. Primeaux SD, Holmes PV (1999) Role of aversively motivated behavior in the olfactory bulbectomy syndrome. Physiol Behav 67(1):41–47

    Article  PubMed  CAS  Google Scholar 

  39. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  PubMed  CAS  Google Scholar 

  40. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75

    Article  PubMed  CAS  Google Scholar 

  41. Lau GC, Saha S, Faris R, Russek SJ (2004) Up-regulation of NMDAR1 subunit gene expression in cortical neurons via a PKA-dependent pathway. J Neurochem 88(3):564–575

    Article  PubMed  CAS  Google Scholar 

  42. Zhao H, Li Q, Pei X, Zhang Z, Yang R, Wang J, Li Y (2009) Long-term ginsenoside administration prevents memory impairment in aged C57BL/6 J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behav Brain Res 201(2):311–317. doi:10.1016/j.bbr.2009.03.002

    Article  PubMed  CAS  Google Scholar 

  43. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368

    Article  PubMed  Google Scholar 

  44. Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16(6):1179–1188

    Article  PubMed  CAS  Google Scholar 

  45. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi:10.1146/annurev.biochem.68.1.821

    Article  PubMed  CAS  Google Scholar 

  46. Lamprecht R (1999) CREB: a message to remember. Cell Mol Life Sci 55(4):554–563

    Article  PubMed  CAS  Google Scholar 

  47. Vaynman S, Ying Z, Gomez-Pinilla F (2007) The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience 144(3):825–833

    Article  PubMed  CAS  Google Scholar 

  48. Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287

    Article  PubMed  Google Scholar 

  49. Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97(1):22–29

    Article  PubMed  CAS  Google Scholar 

  50. Han F, Nakano T, Yamamoto Y, Shioda N, Lu YM, Fukunaga K (2009) Improvement of depressive behaviors by nefiracetam is associated with activation of CaM kinases in olfactory bulbectomized mice. Brain Res 1265:205–214

    Article  PubMed  CAS  Google Scholar 

  51. Moriguchi S, Tanaka T, Tagashira H, Narahashi T, Fukunaga K (2013) Novel nootropic drug sunifiram improves cognitive deficits via CaM kinase II and protein kinase C activation in olfactory bulbectomized mice. Behav Brain Res 242:150–157

    Article  PubMed  CAS  Google Scholar 

  52. Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 23(4):1517–1523

    PubMed  CAS  Google Scholar 

  53. Yoon T, Okada J, Jung MW, Kim JJ (2008) Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem 15(3):97–105. doi:10.1101/lm.850808

    Article  PubMed  Google Scholar 

  54. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110

    Article  PubMed  CAS  Google Scholar 

  55. Zhao Q, Niu Y, Matsumoto K, Tsuneyama K, Tanaka K, Miyata T, Yokozawa T (2012) Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain. BMC Complement Altern Med 12:188. doi:10.1186/1472-6882-12-188

    Article  PubMed  CAS  Google Scholar 

  56. Boyd TE, Trepel C, Racine RJ (2000) Cholinergic modulation of neocortical long-term potentiation in the awake, freely moving rat. Brain Res 881(1):28–36

    Article  PubMed  CAS  Google Scholar 

  57. Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492(Pt 2):479–493

    PubMed  CAS  Google Scholar 

  58. Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 119(2):207–210

    Article  PubMed  CAS  Google Scholar 

  59. Drever BD, Riedel G, Platt B (2011) The cholinergic system and hippocampal plasticity. Behav Brain Res 221(2):505–514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was in part supported by a Grant-in-Aid for the 2010 and 2012 Cooperative Research Project II from the Institute of Natural Medicine, University of Toyama (to H. T. N. P. and K. M.). L. T. X. is the recipient of a scholarship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinzo Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, X.T., Pham, H.T.N., Do, P.T. et al. Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems. Neurochem Res 38, 2201–2215 (2013). https://doi.org/10.1007/s11064-013-1129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1129-6

Keywords

Navigation