Skip to main content

Advertisement

Log in

Shikonin Protects Dopaminergic Cell Line PC12 Against 6-Hydroxydopamine-Mediated Neurotoxicity Via Both Glutathione-Dependent and Independent Pathways and by Inhibiting Apoptosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA–mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. In: Armstrong D (ed) Free radical and anti-oxidant protocols. Humana Press, Totowa, pp 347–352

    Chapter  Google Scholar 

  2. Cederberg J, Galli J, Luthman H, Eriksson UJ (2000) Increased mRNA Levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation- resistant strain. Diabetes 49:101–107

    Article  PubMed  CAS  Google Scholar 

  3. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208

    Article  PubMed  CAS  Google Scholar 

  4. Chen CH, Lin ML, Ong PL, Yang JT (2012) Novel multiple apoptotic mechanism of shikonin in human glioma cells. Ann Surg Oncol 19(9):3097–3106

    Article  PubMed  Google Scholar 

  5. Cheng W, Fu YX, Porres JM, Ross DA, Lei XG (1999) Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J 13:1467–1475

    PubMed  CAS  Google Scholar 

  6. Chou TF, Ma MC, Tsai CP, Chen CF (2009) Enhancement of superoxide dismutase activity in rat lungs after hypoxic preconditioning. Chin J Physiol 52(5 Supplement):376–383

    Article  PubMed  CAS  Google Scholar 

  7. Dexter D, Wells F, Lees AG, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  8. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    Article  PubMed  CAS  Google Scholar 

  9. Fridovich I (1998) The trail to superoxide dismutase. Protein Sci 7(12):2688–2690

    Article  PubMed  CAS  Google Scholar 

  10. Gao D, Kakuma M, Oka S, Sugino K, Sakurai H (2000) Reaction of beta-alkannin (shikonin) with reactive oxygen species: detection of beta-alkannin free radicals. Bioorg Me Chem 8:2561–2569

    Article  CAS  Google Scholar 

  11. Gardaneh M, Gholami M, Maghsudi N (2011) Synergy between glutathione peroxidase-1 and astrocytic growth factors suppresses free radical generation and protects dopaminergic neurons against 6-hydroxydopamine. Rejuven Res 14:195–204

    Article  CAS  Google Scholar 

  12. Gharib E, Gardaneh M, Shojaei S (2013) Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-OHDA and H2O2 toxicities. Rejuven Res (In press)

  13. Halliwell B, Gutteridge JM (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. Febs Lett 307:108–112

    Article  PubMed  CAS  Google Scholar 

  14. Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 41:469–472

    Article  PubMed  CAS  Google Scholar 

  15. Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J neural Trans 50:79–88

    Article  CAS  Google Scholar 

  16. Hisa T, Kimura Y, Takada K, Suzuki F, Takigawa M (1998) Shikonin, an ingredient of Lithospermum erythrorhizon, inhibits angiogenesis in vivo and in vitro. Anticancer Res 18:783–790

    PubMed  CAS  Google Scholar 

  17. Hsu PC, Huang YT, Tsai ML, Wang YJ, Lin JK, Pan MH (2004) Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem 52(20):6330–6337

    Article  PubMed  CAS  Google Scholar 

  18. Kinouchi S (2003) Changes in apoptosis-related genes (Bcl-2, Bax) in the urethras of old female rats following estrogen replacement. Yonago Acta Medica 46:109–115

    CAS  Google Scholar 

  19. Kourounakis AP, Assimopoulou AN, Papageorgiou VP, Gavalas A, Kourounakis PN (2002) Alkannin and shikonin: effect on free radical processes and on inflammation - a preliminary pharmacochemical investigation. Arch Pharm 335:262–266

    Article  CAS  Google Scholar 

  20. Lei XG, Cheng W-H, McClung JP (2007) Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr 27:41–61

    Article  PubMed  CAS  Google Scholar 

  21. Moscow JA, Morrow CS, He R, Mullenbach GT, Cowan KH (1992) Structure and function of the 5′-flanking sequence of the human cytosolic selenium-dependent glutathione peroxidase gene (hgpx1). J Biol Chem 267:5949

    PubMed  CAS  Google Scholar 

  22. Napolitano A, Crescenzi O, Pezzella A, Prota G (1995) Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. J Med Chem 38:917–922

    Article  PubMed  CAS  Google Scholar 

  23. Papageorgiou VP, Assimopoulou AN, Ballis AC (2008) Alkannins and shikonins: a new class of wound healing agents. Curr Med Chem 15(30):3248–3267 Review

    Article  PubMed  CAS  Google Scholar 

  24. Safi R, Gardaneh M, Panahi Y, Maghsoudi N, Zaefizadeh M, Gharib E (2012) Optimized quantities of GDNF overexpressed by engineered astrocytes are critical for protection of neuroblastoma cells against 6-OHDA toxicity. J Mol Neurosci 46:654–665

    Article  PubMed  CAS  Google Scholar 

  25. Smythies J, Galzigna L (1998) The oxidative metabolism of catecholamines in the brain: a review. Biochem Biophys Acta 1380:159–162

    Article  PubMed  CAS  Google Scholar 

  26. St. Clair DK, Chow CK (1996) Glutathione peroxidase: activity and steady-state level of mRNA. In: Punchard NA, Kelly FJ (eds) Free radicals. IRL Press, Oxford, pp 227–240

    Google Scholar 

  27. Tanaka S, Tajima M, Tsukada M, Tabata M (1986) A comparative study on antiinflammatory activities of the enantiomers, shikonin and alkannin. J Nat Prod 49:466–469

    Article  PubMed  CAS  Google Scholar 

  28. Wang Z, Liu T, Gan L, Wang T, Yuan X, Zhang B et al (2010) Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol 643:211–217

    Article  PubMed  CAS  Google Scholar 

  29. Xiong W, Luo G, Zhou L, Zeng Y, Yang W (2009) In vitro and in vivo antitumor effects of acetylshikonin isolated from Arnebia euchroma (Royle) Johnst (Ruanzicao) cell suspension cultures. Chin Med 4:14

    Article  PubMed  Google Scholar 

  30. Yao Y, Brodie AMH, Kensler TW, Zhou Q (2010) Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 124(2):585–591

    Article  PubMed  CAS  Google Scholar 

  31. Yoshimi N, Wang A, Morishita Y, Tanaka T, Sugie S, Kawai K et al (1992) Modifying effects of fungal and herb metabolites on azoxymethane-induced intestinal carcinogenesis in rats. Jpn J Cancer Res 83:1273–1278

    Article  PubMed  CAS  Google Scholar 

  32. Zhang B, Chen N, Chen H, Wang Z, Zheng Q (2012) The critical role of redox Homeostasis in Shikonin-Induced HL-60 cell differentiation via unique modulation of the Nrf2/ARE Pathway. Oxid Med Cell Longev, Article ID 781516, doi:10.1155/2012/781516

  33. Zhao W, Shen Y, Ren S (2011) Endogenous expression of Neuregulin-1 (Nrg1) as a potential modulator of prolactin (PRL) secretion in GH3 cells. Cell Tissue Res 344:313–320

    Article  PubMed  CAS  Google Scholar 

  34. Zhou LJ, Zhu XZ (2000) Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide. J Pharmacol Exp Ther 293:982–988

    PubMed  CAS  Google Scholar 

  35. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease. Ann NY Acad Sci 1147:93–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (420) from NIGEB.

Conflict of interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mossa Gardaneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaeilzadeh, E., Gardaneh, M., Gharib, E. et al. Shikonin Protects Dopaminergic Cell Line PC12 Against 6-Hydroxydopamine-Mediated Neurotoxicity Via Both Glutathione-Dependent and Independent Pathways and by Inhibiting Apoptosis. Neurochem Res 38, 1590–1604 (2013). https://doi.org/10.1007/s11064-013-1061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1061-9

Keywords

Navigation