Skip to main content

Advertisement

Log in

Reduced Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus of High Fat Diet-Fed Mice are Ameliorated by Metformin and Glimepiride Treatment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated the effects of a high-fat diet (HFD) and the subsequent treatment of metformin (met) and glimepiride (glim), which are widely prescribed for type 2 diabetes, on cell proliferation and neuroblast differentiation using Ki67 and doublecortin (DCX) immunohistochemistry, respectively. Animals were fed low-fat diet (LFD) or HFD for 8 weeks. After 5 weeks of the HFD treatment, met alone or met + glim was administered orally once a day for 3 weeks. Body weight and food intake were much higher in the HFD + vehicle-treated group than the LFD-treated group. The administration of met or met + glim to the HFD-treated group resulted in a decrease in weight gain and food intake. Ki67-immunoreactive (+) nuclei, DCX+ neuroblasts and brain-derived neurotrophic factor (BDNF) protein levels were markedly decreased in the dentate gyrus (DG) of the HFD + vehicle-treated group compared to the LFD-treated group. The administration of met or met + glim to the HFD-treated group prevented the reduction of Ki67+ nuclei, DCX+ neuroblasts, BDNF levels in the DG. The intraventricular injection of K252a (a BDNF receptor blocker) to the HFD-treated group treated met or met + glim distinctively lowered the reduction of cell proliferation and neuroblast differentiation induced by HFD. These results suggest that a HFD significantly reduces cell proliferation and neuroblast differentiation by reducing BDNF levels and these effects are ameliorated by treatment with met or met + glim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skyler JS (2006) Atlas of diabetes, 3rd edn. Current Medicine LLC, Philadelphia, Pa

    Google Scholar 

  2. Elmquist JK, Maratos-Flier E, Saper CB, Flier JS (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1:445–450

    Article  PubMed  CAS  Google Scholar 

  3. Shiraishi T, Oomura Y, Sasaki K, Wayner MJ (2000) Effect of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol Behav 71:251–261

    Article  PubMed  CAS  Google Scholar 

  4. Fantuzzi G, Faggioni R (2000) Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol 68:437–446

    PubMed  CAS  Google Scholar 

  5. Kalmijn S, van Boxtel MP, Ocké M, Verschuren WM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280

    PubMed  CAS  Google Scholar 

  6. Solfrizzi V, D’Introno A, Colacicco AM et al (2005) Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp Gerontol 40:257–270

    Article  PubMed  CAS  Google Scholar 

  7. Lindqvist A, Mohapel P, Bouter B et al (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13:1385–1388

    Article  PubMed  CAS  Google Scholar 

  8. Hwang IK, Kim IY, Kim DW et al (2008) Strain-specific differences in cell proliferation and differentiation in the dentate gyrus of C57BL/6N and C3H/HeN mice fed a high fat diet. Brain Res 1241:1–6

    Article  PubMed  CAS  Google Scholar 

  9. West DB, Waguespack J, McCollister S (1995) Dietary obesity in the mouse: interaction of strain with diet composition. Am J Physiol Regul Integr Comp Physiol 268:R658–R665

    CAS  Google Scholar 

  10. Gregoire FM, Zhang Q, Smith SJ et al (2002) Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICM-1-deficient mice. Am J Physiol Endocrinol Metab 282:E703–E713

    PubMed  CAS  Google Scholar 

  11. McAlpine LG, McAlpine CH, Waclawski ER, Storer AM, Kay JW, Frier BM (1988) A comparison of treatment with metformin and gliclazide in patients with non-insulin-dependent diabetes. Eur J Clin Pharmacol 34:129–132

    Article  PubMed  CAS  Google Scholar 

  12. Hermann LS, Karlsson JE, Sjöstrand A (1991) Prospective comparative study in NIDDM patients of metformin and glibenclamide with special reference to lipid profiles. Eur J Clin Pharmacol 41:263–265

    Article  PubMed  CAS  Google Scholar 

  13. Lee A, Morley JE (1998) Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 6:47–53

    PubMed  CAS  Google Scholar 

  14. Desilets AR, Dhakal-Karki S, Dunican KC (2008) Role of metformin for weight management in patients without type 2 diabetes. Ann Pharmacother 42:817–826

    Article  PubMed  CAS  Google Scholar 

  15. Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M (2010) Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull 33:963–970

    Article  PubMed  CAS  Google Scholar 

  16. He L, Sabet A, Djedjos S et al (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137:635–646

    Article  PubMed  CAS  Google Scholar 

  17. Foretz M, Hébrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369

    Article  PubMed  CAS  Google Scholar 

  18. Koshiba K, Nomura M, Nakaya Y, Ito S (2006) Efficacy of glimepiride on insulin resistance, adipocytokines, and atherosclerosis. J Med Invest 53:87–94

    Article  PubMed  Google Scholar 

  19. Schiekofer S, Rudofsky G Jr, Andrassy M et al (2003) Glimepiride reduces mononuclear activation of the redox-sensitive transcription factor nuclear factor-κB. Diabetes Obes Metab 5:251–261

    Article  PubMed  CAS  Google Scholar 

  20. Weitgasser R, Lechleitner M, Luger A, Klingler A (2003) Effects of glimepiride on HbA1c and body weight in type 2 diabetes: results of a 1.5-year follow-up study. Diabetes Res Clin Pract 61:13–19

    Article  PubMed  CAS  Google Scholar 

  21. Umpierrez G, Issa M, Vlajnic A (2006) Glimepiride versus pioglitazone combination therapy in subjects with type 2 diabetes inadequately controlled on metformin monotherapy: results of a randomized clinical trial. Curr Med Res Opin 22:751–759

    Article  PubMed  CAS  Google Scholar 

  22. Shimpi RD, Patil PH, Kuchake VG, Ingle PV, Surana SJ, Dighore PN (2009) Comparison of effect of metformin in combination with glimepiride and glibenclamide on glycaemic control in patient with type 2 diabetes mellitus. Int J PharTech Res 1:50–61

    CAS  Google Scholar 

  23. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105

    Article  PubMed  CAS  Google Scholar 

  24. Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  PubMed  CAS  Google Scholar 

  25. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  PubMed  CAS  Google Scholar 

  26. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  27. Yoo DY, Kim W, Kim DW et al (2011) Pyridoxine enhances cell proliferation and neuroblast differentiation by upregulating the GABAergic system in the mouse dentate gyrus. Neurochem Res 36:713–721

    Article  PubMed  CAS  Google Scholar 

  28. Tamura M, Koyama R, Ikegaya Y, Matsuki N, Yamada MK (2006) K252a, an inhibitor of Trk, disturbs pathfinding of hippocampal mossy fibers. Neuroreport 17:481–486

    Article  PubMed  CAS  Google Scholar 

  29. Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

    PubMed  CAS  Google Scholar 

  30. Yasuda N, Inoue T, Nagakura T et al (2004) Metformin causes reduction of food intake and body weight gain and improvement of glucose intolerance in combination with dipeptidyl peptidase IV inhibitor in Zucker fa/fa rats. J Pharmacol Exp Ther 310:614–619

    Article  PubMed  CAS  Google Scholar 

  31. Hwang IK, Kim IY, Joo EJ et al (2010) Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem Res 35:645–650

    Article  PubMed  CAS  Google Scholar 

  32. Iida KT, Kawakami Y, Suzuki M et al (2003) Effect of thiazolidinediones and metformin on LDL oxidation and aortic endothelium relaxation in diabetic GK rats. Am J Physiol Endocrinol Metab 284:E1125–E1130

    PubMed  CAS  Google Scholar 

  33. Lindsay JR, Duffy NA, McKillop AM et al (2005) Inhibition of dipeptidyl peptidase IV activity by oral metformin in type 2 diabetes. Diabet Med 22:654–657

    Article  PubMed  CAS  Google Scholar 

  34. Schaalan M, El-Abhar HS, Barakat M, El-Denshary ES (2009) Westernized-like-diet-fed rats: effect on glucose homeostasis, lipid profile, and adipocyte hormones and their modulation by rosiglitazone and glimepiride. J Diabetes Complications 23:199–208

    Article  PubMed  Google Scholar 

  35. Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638

    PubMed  CAS  Google Scholar 

  36. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337

    Article  PubMed  Google Scholar 

  37. Tozuka Y, Wada E, Wada K (2009) Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring. FASEB J 23:1920–1934

    Article  PubMed  CAS  Google Scholar 

  38. Niculescu MD, Lupu DS (2009) High fat diet-induced maternal obesity alters fetal hippocampal development. Int J Dev Neurosci 27:627–633

    Article  PubMed  CAS  Google Scholar 

  39. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239

    Article  PubMed  CAS  Google Scholar 

  40. Wang C, Godar RJ, Billington CJ, Kotz CM (2010) Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet. Am J Physiol Regul Integr Comp Physiol 298:R1320–R1332

    Article  PubMed  CAS  Google Scholar 

  41. Ono M, Itakura Y, Nonomura T et al (2000) Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism 49:129–133

    Article  PubMed  CAS  Google Scholar 

  42. Ma P, Gu B, Ma J et al (2010) Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3-kinase/Akt pathway. Metabolism 59:359–366

    Article  PubMed  CAS  Google Scholar 

  43. Ma P, Xiong W, Liu H, Ma J, Gu B, Wu X (2011) Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway. Arch Oral Biol 56:307–316

    Article  PubMed  CAS  Google Scholar 

  44. Bate C, Tayebi M, Diomede L, Salmona M, Williams A (2009) Glimepiride reduces the expression of PrPc, prevents PrPSc formation and protects against prion mediated neurotoxicity in cell lines. PLoS One 4:e8221

    Article  PubMed  Google Scholar 

  45. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192:348–356

    Article  PubMed  CAS  Google Scholar 

  46. Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) (No. 2009-0071833).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Koo Hwang or Yeo Sung Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, D.Y., Kim, W., Nam, S.M. et al. Reduced Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus of High Fat Diet-Fed Mice are Ameliorated by Metformin and Glimepiride Treatment. Neurochem Res 36, 2401–2408 (2011). https://doi.org/10.1007/s11064-011-0566-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0566-3

Keywords

Navigation