Skip to main content
Log in

Differential Changes in Pyridoxine 5′-Phosphate Oxidase Immunoreactivity and Protein Levels in the Somatosensory Cortex and Striatum of the Ischemic Gerbil Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pyridoxal 5′-phosphate (PLP) is an important cofactor in a wide range of biochemical reactions, such as the metabolism of various amino acids, including GABA. PLP is synthesized by the oxidation of pyridoxine 5′-phosphate (PNP), which is catalyzed by PNP oxidase (PNPO). We observed the changes in cresyl violet-positive neurons, PNPO immunoreactivity and PNPO protein levels in the somatosensory cortex and striatum in gerbils after 5 min of transient forebrain ischemia. Cresyl violet-positive neurons showed condensed cytoplasm in the somatosensory cortex and lateral part of the striatum at 2 days after ischemia/reperfusion. PNPO immunoreactivity began to increase in neurons in layers III and V at 3 h after ischemia/reperfusion and this immunoreactivity was significantly increased at 12 h after ischemia/reperfusion. Thereafter, PNPO immunoreactivity decreased with time after ischemia/reperfusion. PNPO-immunoreactive neurons were only slightly detected in the lateral part of the striatum at 12 h after ischemia/reperfusion. In addition, the PNPO protein levels in both the somatosensory cortex and striatum homogenates peaked at 12 h after ischemia/reperfusion. These results indicate that PNPO is significantly increased in the ischemic somatosensory cortex and lateral part of the striatum, and this change in the level of PNPO may be associated with the neuronal damage induced by ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi JD, Bowers-Komro M, Davis MD, Edmondson SE, McCormick DB (1983) Kinetic properties of pyridoxamine (pyridoxine)-5’-phosphate oxidase from rabbit liver. J Biol Chem 258:840–845

    PubMed  CAS  Google Scholar 

  2. Kelly PJ, Kistler JP, Shih VE et al (2004) Inflammation, homocysteine, and vitamin B6 status after ischemic stroke. Stroke 35:12–15

    Article  PubMed  CAS  Google Scholar 

  3. Huang J, Agus DB, Winfree CJ et al (2001) Dehydroascorbic acid, a blood–brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724

    Article  PubMed  CAS  Google Scholar 

  4. Wang XD, Kashii S, Zhao L et al (2002) Vitamin B6 protects primate retinal neurons from ischemic injury. Brain Res 940:36–43

    PubMed  CAS  Google Scholar 

  5. Baxter P (2003) Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 1647(2003):36–41

    PubMed  CAS  Google Scholar 

  6. Nitsch C, Goping G, Klatzo I (1989) Preservation of GABAergic perikarya and boutons after transient ischemia in the gerbil hippocampal CA1 field. Brain Res 495:243–252

    Article  PubMed  CAS  Google Scholar 

  7. Gentilucci M, Toni I, Daprati E, Gangitano M (1997) Tactile input of the hand and the control of reaching to grasp movements. Exp Brain Res 114(1997):130–137

    Article  PubMed  CAS  Google Scholar 

  8. Rabin E, Gordon AM (2004) Tactile feedback contributes to consistency of finger movements during typing. Exp Brain Res 155:362–369

    Article  PubMed  Google Scholar 

  9. Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG (2005) Enduring representational plasticity after somatosensory stimulation. Neuroimage 27:872–884

    Article  PubMed  Google Scholar 

  10. Wong AM, Su TY, Tang FT, Cheng PT, Liaw MY (1999) Clinical trial of electrical acupuncture on hemiplegic stroke patients. Am J Phys Med Rehabil 78:117–122

    Article  PubMed  CAS  Google Scholar 

  11. Conforto AB, Kaelin-Lang A, Cohen LG (2002) Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 51:122–125

    Article  PubMed  Google Scholar 

  12. Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  CAS  Google Scholar 

  13. Chase TN (2004) Striatal plasticity and extrapyramidal motor dysfunction. Parkinsonism Relat Disord 10:305–313

    Article  PubMed  Google Scholar 

  14. Meno JR, Higashi H, Cambray AJ, Zhou J, D’Ambrosio R, Winn HR (2003) Hippocampal injury and neurobehavioral deficits are improved by PD 81,723 following hyperglycemic cerebral ischemia. Exp Neurol 183:188–196

    Article  PubMed  CAS  Google Scholar 

  15. Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187:94–104

    Article  PubMed  Google Scholar 

  16. Lin CS, Polsky K, Nadler JV, Crain BJ (1990) Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 35:289–299

    Article  PubMed  CAS  Google Scholar 

  17. Hwang IK, Yoo KY, Kim DS et al (2004) Changes of pyridoxal kinase expression and activity in the gerbil hippocampus following transient forebrain ischemia. Neuroscience 128:511–518

    Article  PubMed  CAS  Google Scholar 

  18. Hwang IK, Yoo KY, Kim DW et al (2006) Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 31:957–965

    Article  PubMed  CAS  Google Scholar 

  19. Hwang IK, Yoo KY, Kim DH, Lee BH, Kwon YG, Won MH (2007) Time course of changes in pyridoxal 5’-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic damage. Exp Neurol 206:114–125

    Article  PubMed  CAS  Google Scholar 

  20. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526

    Article  PubMed  CAS  Google Scholar 

  21. Larsen GA, Skjellegrind HK, Moe MC, Vinje ML, Berg-Johnsen J (2005) Endoplasmic reticulum dysfunction and Ca2+ deregulation in isolated CA1 neurons during oxygen and glucose deprivation. Neurochem Res 30:651–659

    Article  PubMed  CAS  Google Scholar 

  22. Yamashima T, Zhao L, Wang XD, Tsukada T, Tonchev AB (2001) Neuroprotective effects of pyridoxal phosphate and pyridoxal against ischemia in monkeys. Nutr Neurosci 4:389–397

    PubMed  CAS  Google Scholar 

  23. Blomqvist P, Wieloch T (1985) Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J Cereb Blood Flow Metab 5:420–431

    PubMed  CAS  Google Scholar 

  24. Bahn JH, Kwon OS, Joo HM et al (2002) Immunohistochemical studies of brain pyridoxine-5’-phosphate oxidase. Brain Res 925:159–168

    Article  PubMed  CAS  Google Scholar 

  25. Geng MY, Saito H, Katsuki H (1995) Effects of vitamin B6 and its related compounds on survival of cultured brain neurons. Neurosci Res 24:61–65

    Article  PubMed  CAS  Google Scholar 

  26. Crain BJ, Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402

    Article  PubMed  CAS  Google Scholar 

  27. Martin DL, Rimvall K (1993) Regulation of γ-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    Article  PubMed  CAS  Google Scholar 

  28. Kandzari DE, Dery JP, Armstrong PW et al (2005) MC-1 (pyridoxal 5’-phosphate): novel therapeutic applications to reduce ischaemic injury. Expert Opin Investig Drugs 14:1435–1442

    Article  PubMed  CAS  Google Scholar 

  29. Shuaib A, Ijaz S, Kalra J, Code W (1992) During repetitive forebrain ischemia, post-ischemic hypothermia protects neurons from damage. Can J Neurol Sci 19:428–432

    PubMed  CAS  Google Scholar 

  30. Shuaib A, Ijaz S, Hasan S, Kalra J (1993) Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulate damage in repetitive transient ischemia in gerbils. Brain Res 590:13–17

    Article  Google Scholar 

  31. Kang TC, Park SK, Hwang IK et al (2002) Chronological changes in pyridoxine-5’-phosphate oxidase immunoreactivity in the seizure-sensitive gerbil hippocampus. J Neurosci Res 68:785–791

    Article  PubMed  CAS  Google Scholar 

  32. Lyden PD, Lonzo L (1994) Combination therapy protects ischemic brain in rats: a glutamate antagonist plus a GABA agonist. Stroke 25:189–195

    PubMed  CAS  Google Scholar 

  33. Shuaib A, Ihaz S, Hasan S, Kalra J (1992) Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulata damage in repetitive transient forebrain ischemia. Brain Res 590:13–17

    Article  PubMed  CAS  Google Scholar 

  34. Shuaib A, Murabit MA, Kanthan R, Howlett W, Wishart T (1996) The neuroprotective effects of gamma-vinyl GABA in transient global ischemia: a morphological study with early and delayed evaluations. Neurosci Lett 204:1–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help on this study. This work was supported by the Research Innovation Center at Hallym University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Yoo, KY., Kim, D.W. et al. Differential Changes in Pyridoxine 5′-Phosphate Oxidase Immunoreactivity and Protein Levels in the Somatosensory Cortex and Striatum of the Ischemic Gerbil Brain. Neurochem Res 33, 1356–1364 (2008). https://doi.org/10.1007/s11064-008-9591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9591-2

Keywords

Navigation