Skip to main content

Advertisement

Log in

Effects of a Propolis Extract on the Viability of and Levels of Cytoskeletal and Regulatory Proteins in Rat Brain Astrocytes: an In Vitro Study

  • Published:
Neurophysiology Aims and scope

A potential for the use of propolis in preventive and therapeutic purposes has been acknowledged, but little attention has been paid to estimation of possible propolis cytotoxicity with respect to astrocytes. We tried to estimate how a propolis ethanol extract (PEE) affects rat brain astrocytes in vitro and also to uncover crucial molecular targets of the PEE action. Primary astrocytes were exposed to PEE in doses of 10, 25, or 100 μg/ml for 24 h, and then the cell viability was monitored by MTT assay. Levels of glial fibrillary acidic protein (GFAP), transcriptional nuclear factor-κB (NF-κB), poly(ADPribose) polymerase (PARP), and angiostatins were measured using Western blot to identify the molecular mechanisms underlying cell responses to PEE. The PEE treatment exerted a dose-dependent cytotoxic effect on cultured astrocytes. The PEE modulated astrocyte signaling pathways through inducing the expression of NF-κB and PARP. At the same time, the PEE stimulated GFAP synthesis and fibrillogenesis, which was indicative for activation of astrocytes preceding their suppression. The PEE significantly increased the production of angiostatin isoforms by astrocytes, thus contributing to an antiangiogenic potential of these cells. In summary, our results indicated that exposure to the PEE exerts certain cytotoxic effects on astrocytes in a dose-dependent manner; these effects are realized through modulation of cytoskeleton rearrangements and pro-apoptotic signaling pathways. A widely available, safe, and inexpensive substance, propolis, and its components and derivatives may be used in the prevention and treatment of neuronal impairments, including malignant tumors and neurodegenerative disorders associated with excessive astrocytic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Huang, C. P. Zhang, K. Wang, et al., “Recent advances in the chemical composition of propolis,” Molecules, 19, No. 12, 19610-19632 (2014).

    Article  PubMed  Google Scholar 

  2. K. Sorkun, B. Süer, and B. Salih, “Determination of chemical composition of Turkish propolis,” Z. Naturforsch. Ser. C., 56, Nos. 7/8, 666-668 (2001).

    CAS  Google Scholar 

  3. A. K. Kuropatnicki, E. Szliszka, and W. Krol, “Historical aspects of propolis research in modern times,” Evid. Based Complem. Altern. Med., 2013, 964149 (2013).

  4. N. Zabaiou, A. Fouache, A. Trousson, et al., “Biological properties of propolis extracts: something new from an ancient product,” Chem. Phys. Lipids., 17, 30025-30027 (2017).

    Google Scholar 

  5. J. M. Sforcin, “Biological properties and therapeutic applications of propolis,” Phytother. Res., 30, No. 6, 894-905 (2016).

    Article  PubMed  Google Scholar 

  6. A. P. Tiveron, P. L. Rosalen, M. Franchin, et al., “Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of South Brazilian organic propolis,” PLoS One, 11, No. 11, e0165588 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. L. Kubiliene, V. Laugaliene, A. Pavilonis, et al., “Alternative preparation of propolis extracts: comparison of their composition and biological activities,” BMC Complem. Altern. Med., 15, 156 (2015).

    Article  Google Scholar 

  8. T. Farooqui and A. A. Farooqui, “Beneficial effects of propolis on human health and neurological diseases,” Front. Biosci. (Elite Ed.)., 4, 779-793 (2012).

    Article  PubMed  Google Scholar 

  9. M. Shimazawa, S. Chikamatsu, N. Morimoto, et al., “Neuroprotection by Brazilian green propolis against in vitro and in vivo ischemic neuronal damage,” Evid. Based Complem. Altern. Med., 2, No. 2, 201-207 (2005).

    Article  Google Scholar 

  10. S. Nanaware, M. Shelar, A. Sinnathambi, et al., “Neuroprotective effect of Indian propolis in β-amyloid induced memory deficit: impact on behavioral and biochemical parameters in rats,” Biomed. Pharmacother., 93, 543-553 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. A. Verkhratsky, R. Zorec, and V. Parpura, “Stratification of astrocytes in healthy and diseased brain,” Brain Pathol., 27, No. 5, 629-644 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. A. A. Tykhomyrov, A. S. Pavlova, and V. S. Nedzvetsky, “Glial fibrillary acidic protein (GFAP): on the 45th anniversary of discovery,” Neurophysiology, 48, No. 1, 54-71 (2016).

    Article  CAS  Google Scholar 

  13. J. E. Burda and M. V. Sofroniew, “Reactive gliosis and the multicellular response to CNS damage and disease,” Neuron, 81, No. 2, 229-248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. W. W. Chen, X. Zhang, and W. J. Huang, “Role of neuroinflammation in neurodegenerative diseases (review),” Mol. Med. Rep., 13, No. 4, 3391-3396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Q. Du, C. Hao, J. Gou, et al., “Protective effects of p-nitrocaffeic acid phenethyl ester on acute myocardial ischemia-reperfusion injury in rats,” Exp. Ther. Med., 11, No. 4, 1433-1440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Lawrence, “The nuclear factor NF-kappaB pathway in inflammation,” Cold Spring Harb. Perspect. Biol., 1, No. 6, a001651 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. F. Yuan, Z. M. Xu, L. Y. Lu, et al., “SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation,” J. Neurochem., 136, No. 3, 581-593 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. M. O. Hottiger, P. O. Hassa, B. Lüscher, et al., “Toward a unified nomenclature for mammalian ADPribosyltransferases,” Trends Biochem. Sci., 35, No. 4, 208-219 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. B. A. Gibson and L. W. Kraus, “New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs,” Nat. Rev. Mol. Cell Biol., 13, 411-424 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. S. Vyas and P. Chang, “New PARP targets for cancer therapy,” Nat. Rev. Cancer, 14, 502-509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Berezowski, A. M. Fukuda, R. Cecchelli, and J. Badaut, “Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology,” Int. J. Cell. Biol., 2012, 176287 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. A. A. Tykhomyrov, V. S. Nedzvetsky, C. A. Ağca, et al., “Plasminogen and its fragments in rat brain: a plausible role for astrocytes in angiostatin generation,” Ukr. Biochem. J., 89, No. 2, 43-54 (2017).

    Article  CAS  Google Scholar 

  23. M. L. Wahl, D. J. Kenan, M. Gonzalez-Gronow, and S. V. Pizzo, “Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated,” J. Cell. Biochem., 96, No. 2, 242-261 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. A. A. Tykhomyrov, S. I. Shram, and T. V. Grinenko, “Role of angiostatins in diabetic complications,” Biomed. Khim., 61, No. 1, 41-56 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. J. K. Ryu, J. P. Little, and A. Klegeris, “Actions of the anti-angiogenic compound angiostatin in an animal model of Alzheimer’s disease,” Curr. Alzheimer Res., 10, No. 3, 252-260 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. J. Carmichael, W. G. DeGraff, A. F. Gazdar, et al., “Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing,” Cancer Res., 47, No. 4, 936-942 (1987).

    CAS  PubMed  Google Scholar 

  27. H. Xuan, J. Zhao, J. Miao, et al., “Effect of Brazilian propolis on human umbilical vein endothelial cell apoptosis,” Food Chem. Toxicol., 49, No. 1, 78-85 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. M. M. Guzyk, A. A. Tykhomyrov, V. S. Nedzvetsky, et al., “Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats,” Neurochem. Res., 41, No. 10, 2526-2537 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. M. M. Bradford, “Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., 72, 248-254 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. V. Bankova, “Chemical diversity of propolis and the problem of standardization,” J. Ethnopharmacol., 100, Nos. 1/2, 114-117 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. S. Kumazawa, T. Hamasaka, and T. Nakayama, “Antioxidant activity of propolis of various geographic origins,” Food Chem., 84, No. 3, 329-339 (2004).

    Article  CAS  Google Scholar 

  32. M. A. E. Watamnabe, M. K. Amarante, B. J. Conti, and J. M. Sforcin, “Cytotoxic constituents of propolis inducing anticancer effects: a review,” J. Pharm. Pharmacol., 63, 1378-1386 (2011).

    Article  Google Scholar 

  33. M. Tartik, E. Darendelioglu, G. Aykutoglu, and G. Baydas, “Turkish propolis supresses MCF-7 cell death induced by homocysteine,” Biomed. Pharmacother., 82, 704-712 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. G. Murtaza, S. Karim, and M. R. Akram, “Caffeic acid phenethyl ester and therapeutic potentials,” Biomed. Res. Int., 2014, 145342 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. R. Markiewicz-Żukowska, H. Car, S. K. Naliwajko, et al., “Ethanolic extract of propolis, chrysin, CAPE inhibit human astroglia cells,” Adv. Med. Sci., 57, No. 2, 208-216 (2012).

    Article  PubMed  Google Scholar 

  36. C. N. Chen, C. L. Wu, and J. K. Lin, “Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis,” Cancer Lett., 245, Nos. 1/2, 218-231 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. M. Kumazaki, H. Shinohara, and K. Taniguchi, “Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression,” Phytomedicine, 21, Nos. 8/9, 1070-1077 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. M. Schieber and N. S. Chandel, “ROS function in redox signaling and oxidative stress,” Curr. Biol., 24, No. 10, R453-R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R. A. de Sá, F. A. de Castro, E. C. Eleutherio, et al., “Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress,” Braz. J. Microbiol., 44, No. 3, 993-1000 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. R. C. Calhelha, S. Falcão, M. J. Queiroz, et al., “Cytotoxicity of Portuguese propolis: the proximity of the in vitro doses for tumor and normal cell lines,” Biomed. Res. Int., 2014, 897361 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. L. M. da Silva, Y. Frión-Herrera, A. R. Bartolomeu, et al., “Mechanisms involved in the cytotoxic action of Brazilian propolis and caffeic acid against HEp-2 cells and modulation of P-glycoprotein activity,” J. Pharm. Pharmacol., doi: https://doi.org/10.1111/jphp.12789 (2017).

  42. X. M. Zhang and J. Zhu, “Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines,” Current Neuropharmacol., 9, No. 2, 388-398 (2011).

    Article  CAS  Google Scholar 

  43. H. Y. Hsiao, Y. C. Chen, H. M. Chen, et al., “A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease,” Human Mol. Genet., 22, No. 9, 1826-1842 (2013).

    Article  CAS  Google Scholar 

  44. R. Saggu, T. Schumacher, and F. Gerich, “Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia,” Acta Neuropathol. Commun., 4, No. 1, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. B. J. Conti, K. B. Santiago, E. O. Cardoso, et al., “Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells,” J. Pharm. Pharmacol., 68, No. 12, 1604-1612 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. C. C. Alano, P. Garnier, W. Ying, et al., “NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death,” J. Neurosci., 30, No. 8, 2967-2978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. G. V. Chaitanya, A. J. Steven, and P. P. Babu, “PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration,” Cell. Commun. Signal., 8, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyteendothelial interactions at the blood-brain barrier,” Nat. Rev. Neurosci., 7, No. 1, 41-53 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. J. M. Cherrington, L. M. Strawn, and L. K. Shawver, “New paradigms for the treatment of cancer: the role of anti-angiogenesis agents,” Adv. Cancer Res., 79, 1-38 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. W. Y. Kim and H. Y. Lee, “Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors,” FEBS J., 276, No. 17, 4653-4664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. W. C. Sin, Q. Aftab, J. F. Bechberger, et al., “Astrocytes promote glioma invasion via the gap junction protein connexin43,” Oncogene, 35, No. 12, 1504-1516 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. D. M. Le, A. Besson, D. K. Fogg, et al., “Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade,” J. Neurosci., 23, No. 10, 4034-4043 (2003).

    PubMed  Google Scholar 

  53. A. Briens, I. Bardou, H. Lebas, et al., “Astrocytes regulate the balance between plasminogen activation and plasmin clearance via cell-surface actin,” Cell Discov., 3, 17001 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. J. O’Mullane and M. S. Baker, “Elevated plasminogen receptor expression occurs as a degradative phase event in cellular apoptosis,” Immunol. Cell Biol., 77, No. 3, 249-255 (1999).

    Article  PubMed  Google Scholar 

  55. Y. N. Li, R. Pan, X. J. Qin, et al., “Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression,” J. Neurochem., 129, No. 1, 120-129 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. H. Izuta, M. Shimazawa, K. Tsuruma, et al., “Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells,” BMC Complem. Altern. Med., 9, 45 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tykhomyrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agca, C.A., Tykhomyrov, A.A., Baydas, G. et al. Effects of a Propolis Extract on the Viability of and Levels of Cytoskeletal and Regulatory Proteins in Rat Brain Astrocytes: an In Vitro Study. Neurophysiology 49, 261–271 (2017). https://doi.org/10.1007/s11062-017-9680-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9680-4

Keywords

Navigation