Skip to main content

Advertisement

Log in

Profiling Hsp90 differential expression and the molecular effects of the Hsp90 inhibitor IPI-504 in high-grade glioma models

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Retaspimycin hydrochloride (IPI-504), an Hsp90 (heat shock protein 90) inhibitor, has shown activity in multiple preclinical cancer models, such as lung, breast and ovarian cancers. However, its biological effects in gliomas and normal brain derived cellular populations remain unknown. In this study, we profiled the expression pattern of Hsp90α/β mRNA in stable glioma cell lines, multiple glioma-derived primary cultures and human neural stem/progenitor cells. The effects of IPI-504 on cell proliferation, apoptosis, motility and expression of Hsp90 client proteins were evaluated in glioma cell lines. In vivo activity of IPI-504 was investigated in subcutaneous glioma xenografts. Our results showed Hsp90α and Hsp90β expression levels to be patient-specific, higher in high-grade glioma-derived primary cells than in low-grade glioma-derived primary cells, and strongly correlated with CD133 expression and differentiation status of cells. Hsp90 inhibition by IPI-504 induced apoptosis, blocked migration and invasion, and significantly decreased epidermal growth factor receptor levels, mitogen-activated protein kinase and/or Akt activities, and secretion of vascular endothelial growth factor in glioma cell lines. In vivo study showed that IPI-504 could mildly attenuate tumor growth in immunocompromised mice. These findings suggest that targeting Hsp90 by IPI-504 has the potential to become an active therapeutic strategy in gliomas in a selective group of patients, but further research into combination therapies is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    CAS  PubMed  Google Scholar 

  2. Lindquist S, Craig EA (1988) The Heat-Shock Proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  3. Millson SH, Truman AW, Racz A, Hu B, Panaretou B, Nuttall J et al (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90 beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274:4453–4463

    Article  CAS  PubMed  Google Scholar 

  4. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL et al (2012) Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 14:R62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wang J, Cui S, Zhang X, Wu Y, Tang H (2013) High expression of heat shock protein 90 is associated with tumor aggressiveness and poor prognosis in patients with advanced gastric cancer. PLoS One 8:e62876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Khalil AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 1816:89–104

    CAS  PubMed  Google Scholar 

  8. Den RB, Lu B (2012) Heat shock protein 90 inhibition: rationale and clinical potential. Ther Adv Med Oncol 4:211–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  10. Sydor JR, Normant E, Pien CS, Porter JR, Ge J, Grenier L et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci USA 103:17408–17413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ge J, Normant E, Porter JR, Ali JA, Dembski MS, Gao Y et al (2006) Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J Med Chem 49:4606–4615

    Article  CAS  PubMed  Google Scholar 

  12. Maroney AC, Marugan JJ, Mezzasalma TM, Barnakov AN, Garrabrant TA, Weaner LE et al (2006) Dihydroquinone ansamycins: toward resolving the conflict between low in vitro affinity and high cellular potency of geldanamycin derivatives. Biochemistry 45:5678–5685

    Article  CAS  PubMed  Google Scholar 

  13. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  15. Siegelin MD, Habel A, Gaiser T (2009) 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis. Neurobiol Dis 33:243–249

    Article  CAS  PubMed  Google Scholar 

  16. Rao RD, Uhm JH, Krishnan S, James CD (2003) Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Front Biosci 8:e270–e280

    Article  CAS  PubMed  Google Scholar 

  17. Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J et al (2009) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol 11:109–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  19. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  20. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  21. Di K, Linskey ME, Bota DA (2013) TRIM11 is overexpressed in high-grade gliomas and promotes proliferation, invasion, migration and glial tumor growth. Oncogene 32:5038–5047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H (2003) Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 74:838–851

    Article  CAS  PubMed  Google Scholar 

  23. Pistollato F, Chen HL, Rood BR, Zhang HZ, D’Avella D, Denaro L et al (2009) Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 27:7–17

    Article  CAS  PubMed  Google Scholar 

  24. Gong X, Schwartz PH, Linskey ME, Bota DA (2011) Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology 76:1126–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bota DA, Alexandru D, Keir ST, Bigner D, Vredenburgh J, Friedman HS (2013) Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells’ VEGF production and angiogenesis. J Neurosurg 119:1415–1423

    Article  PubMed  Google Scholar 

  26. Keir ST, Dewhirst MW, Kirkpatrick JP, Bigner DD, Batinic-Haberle I (2011) Cellular redox modulator, ortho Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) in the treatment of brain tumors. Anticancer Agents Med Chem 11:202–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yamada T, Hashiguchi A, Fukushima S, Kakita Y, Umezawa A, Maruyama T et al (2000) Function of 90-kDa heat shock protein in cellular differentiation of human embryonal carcinoma cells. In Vitro Cell Dev Biol Anim 36:139–146

    Article  CAS  PubMed  Google Scholar 

  28. Bradley E, Bieberich E, Mivechi NF, Tangpisuthipongsa D, Wang G (2012) Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells 30:1624–1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P (2004) Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. J Neurosci Res 78:625–636

    Article  CAS  PubMed  Google Scholar 

  30. Lim DA, Cha S, Mayo MC, Chen MH, Keles E, VandenBerg S et al (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9:424–429

    Article  PubMed Central  PubMed  Google Scholar 

  31. Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shirai S et al (1996) Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res 56:2185–2190

    CAS  PubMed  Google Scholar 

  32. Maity A, Pore N, Lee J, Solomon D, O’Rourke DM (2000) Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3′-kinase and distinct from that induced by hypoxia. Cancer Res 60:5879–5886

    CAS  PubMed  Google Scholar 

  33. Song D, Chaerkady R, Tan AC, Garcia-Garcia E, Nalli A, Suarez-Gauthier A et al (2008) Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther 7:3275–3284

    Article  CAS  PubMed  Google Scholar 

  34. Fu J, Koul D, Yao J, Wang S, Yuan Y, Colman H et al (2013) Novel HSP90 inhibitor NVP-HSP990 targets cell-cycle regulators to ablate Olig2-positive glioma tumor-initiating cells. Cancer Res 73:3062–3074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Newcomb EW, Lukyanov Y, Schnee T, Esencay M, Fischer I, Hong D et al (2007) The geldanamycin analogue 17-allylamino-17-demethoxygeldanamycin inhibits the growth of GL261 glioma cells in vitro and in vivo. Anticancer Drugs 18:875–882

    CAS  PubMed  Google Scholar 

  36. Roue G, Perez-Galan P, Mozos A, Lopez-Guerra M, Xargay-Torrent S, Rosich L et al (2011) The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood 117:1270–1279

    Article  CAS  PubMed  Google Scholar 

  37. De Raedt T, Walton Z, Yecies JL, Li D, Chen Y, Malone CF et al (2011) Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20:400–413

    Article  PubMed Central  PubMed  Google Scholar 

  38. Scaltriti M, Serra V, Normant E, Guzman M, Rodriguez O, Lim AR et al (2011) Antitumor activity of the Hsp90 inhibitor IPI-504 in HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther 10:817–824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Infinity Pharmaceuticals for providing IPI-504 and Dr. Julian Adams for his suggestions and comments. We gratefully acknowledge Dr. David A. Fruman for providing us phospho-AKT (Ser473) antibody, and the Core Facility of Department of Pathology & Laboratory Medicine of UC Irvine for help performing the immunocytochemistry experiments. This study was supported in part by research funds donated by Ralph and Suzanne Stern, start-up funds to Dr. Bota from the UC Irvine, and the National Cancer Institute of the National Institutes of Health under Award Number P30CA062203.

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela A. Bota.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, K., Keir, S.T., Alexandru-Abrams, D. et al. Profiling Hsp90 differential expression and the molecular effects of the Hsp90 inhibitor IPI-504 in high-grade glioma models. J Neurooncol 120, 473–481 (2014). https://doi.org/10.1007/s11060-014-1579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1579-y

Keywords

Navigation