Skip to main content
Log in

Multimodal Stimulation in the Neurorehabilitation of Patients with Poststroke Cognitive Impairments

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Loss of functional activity after strokes occupies the leading position among the main causes of disability in the adult population throughout the world. Particular attention is currently paid to poststroke cognitive disorders. Construction of rehabilitation programs increasingly employs approaches based on multimodal treatments, which allows comprehensive coverage of the whole spectrum of ongoing neurological deficits in patients and provides the opportunity for more effective restoration of functional activity after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pohl, G. Carlsson, L. Bunketorp Käll, et al., “Experiences from a multimodal rhythm and music-based rehabilitation program in late phase of stroke recovery – A qualitative study,” PLoS One, 13, No. 9, 0204215 (2018), https://doi.org/10.1371/journal.pone.0204215.

    Article  CAS  Google Scholar 

  2. J. M. Cassidy and S. C. Cramer, “Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke,” Transl. Stroke Res., 8, No. 1, 33–46 (2017), https://doi.org/10.1007/s12975-016-0467-5.

    Article  CAS  PubMed  Google Scholar 

  3. H. Jokinen, S. Melkas, R. Ylikoski, et al., “Post-stroke cognitive impairment is common even after successful clinical recovery,” Eur. J. Neurol., 22, No. 9, 1288–1294 (2015), https://doi.org/10.1111/ene.12743.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Yang, Y. Z. Shi, N. Zhang, et al., “The disability rate of 5-year post-stroke and its correlation factors: a national survey in China,” PLoS One, 11, No. 11, 0165341 (2016), https://doi.org/10.1371/journal.pone.0165341.

    Article  CAS  Google Scholar 

  5. Y. Teuschl, H. Ihle-Hansen, K. Matz, et al. and the ASPIS Study Group, “Multidomain intervention for the prevention of cognitive decline after stroke – a pooled patient-level data analysis,” Eur. J. Neurol., 25, No. 9, 1182–1188 (2018), https://doi.org/10.1111/ene.13684.

  6. J. H. Sun, L. Tan, and J. T. Yu, “Post-stroke cognitive impairment: epidemiology, mechanisms and management,” Ann. Transl. Med., 2, No. 8, 80 (2014), https://doi.org/10.3978/j.issn.2305-5839.2014.08.05.

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. N. Bogolepova and E. A. Kovalenko, “Poststroke cognitive deficit: main features and risk factors,” Consilium Medicum, 19, No. 2, 14–18 (2017), http://con-med.ru/magazines/consilium_medicum.

    Article  Google Scholar 

  8. Å. H. Morsund, H. Ellekjær, A. Gramstad, et al., “Cognitive and emotional impairment after minor stroke and non-ST-elevation myocardial infarction (NSTEMI). A prevalence study,” Stroke Res. Treat., 2527384 (2019), https://doi.org/10.1155/2019/2527384.

  9. A. Pollock, B. St George, M. Fenton, and L. Firkins, “Top 10 research priorities relating to life after stroke-consensus from stroke survivors, caregivers, and health professionals,” Int. J. Stroke, 9, No. 3, 313–320 (2014), https://doi.org/10.1111/j.1747-4949.2012.00942.x.

    Article  PubMed  Google Scholar 

  10. J. Dąbrowski, A. Czajka, J. Zielińska-Turek, et al., “Brain functional reserve in the context of neuroplasticity after stroke,” Neural Plast., 2019, 9708905 (2019), https://doi.org/10.1155/2019/9708905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. Ward, E. Paul, P. Watson, et al., “Enhanced learning through multimodal training: evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention,” Sci. Rep., 7, No. 1, 5808 (2017), https://doi.org/10.1038/s41598-017-06237-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Cespón, C. Miniussi, and M. C. Pellicciari, “Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity,” Ageing Res. Rev., 43, 81–98 (2018), https://doi.org/10.1016/j.arr.2018.03.001.

    Article  PubMed  Google Scholar 

  13. M. Maier, B. R. Ballester, and P. F. M. J. Verschure, “Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms,” Front. Syst. Neurosci., 13, 74 (2019), https://doi.org/10.3389/fnsys.2019.00074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. Ngandu, J. Lehtisalo, A. Solomon, et al., “A 2 year multidomain intervention, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER, a randomised controlled trial,” Lancet, 385, No. 9984, 2255–2263 (2015), https://doi.org/10.1016/S0140-6736(15)60461-5.

  15. P. Pohl, G. Carlsson, L. Bunketorp Käll, et al., “A qualitative exploration of post-acute stroke participants’ experiences of a multimodal intervention incorporating horseback riding,” PLoS One, 13, No. 9, e0203933 (2018), https://doi.org/10.1371/journal.pone.0203933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Liu-Ambrose and J. J. Eng, “Exercise training and recreational activities to promote executive functions in chronic stroke: a proofof-concept study,” J. Stroke Cerebrovasc. Dis., 24, No. 1, 130–137 (2015), https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.08.012.

    Article  PubMed  Google Scholar 

  17. I. C. Rosbergen, R. S. Grimley, K. S. Hayward, et al., “Embedding an enriched environment in an acute stroke unit increases activity in people with stroke: a controlled before-after pilot study,” Clin. Rehabil., 31, No. 11, 1516–1528 (2017), https://doi.org/10.1177/0269215517705181.

    Article  PubMed  Google Scholar 

  18. E. Galińska, “Music therapy in neurological rehabilitation settings,” Psychiatr. Pol., 49, No. 4, 835–846 (2015), https://doi.org/10.12740/PP/25557.

    Article  PubMed  Google Scholar 

  19. K. Thornberg, S. Josephsson, and I. Lindquist, “Experiences of participation in rhythm and movement therapy after stroke,” Disabil. Rehabil., 36, No. 22, 1869–1874 (2014), https://doi.org/10.3109/09638288.2013.876107.

    Article  PubMed  Google Scholar 

  20. M. O. Park and S. H. Lee, “Effect of a dual-task program with different cognitive tasks applied to stroke patients: A pilot randomized controlled trial,” Neurorehabilitation, 44, No. 2, 239–249 (2019), https://doi.org/10.3233/NRE-182563.

    Article  PubMed  Google Scholar 

  21. G. Y. Kim, M. R. Han, and H. G. Lee, “Effect of dual-task rehabilitative training on cognitive and motor function of stroke patients,” J. Phys. Ther. Sci., 26, No. 1, 1–6 (2014), https://doi.org/10.1589/jpts.26.1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Y. Netz, “Is there a preferred mode of exercise for cognition enhancement in older age? A narrative review,” Front. Med. (Lausanne), 6, 57 (2019), https://doi.org/10.3389/fmed.2019.00057.

  23. L. L. Law, F. Barnett, M. K. Yau, and M. A. Gray, “Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: a systematic review,” Ageing Res. Rev., 15, 61–75 (2014), https://doi.org/10.1016/j.arr.2014.02.008.

    Article  PubMed  Google Scholar 

  24. Y. Tetik Aydoğdu, O. Aydoğdu, and H. S. İnal, “The effects of dual-task training on patient outcomes of institutionalized elderly having chronic stroke,” Dement. Geriatr. Cogn. Disord. Extra, 8, No. 3, 328–332 (2018), https://doi.org/10.1159/000492964.

    Article  Google Scholar 

  25. T. T. Yeh, C. Y. Wu, Y. W. Hsieh, et al., “Synergistic effects of aerobic exercise and cognitive training on cognition, physiological markers, daily function, and quality of life in stroke survivors with cognitive decline: study protocol for a randomized controlled trial,” Trials, 18, No. 1, 405 (2017), https://doi.org/10.1186/s13063-017-2153-7.

  26. A. Maass, S. Düzel, T. Brigadski, et al., “Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults,” Neuroimage, 131, 142–154 (2016), https://doi.org/10.1016/j.neuroimage.2015.10.084.

    Article  CAS  PubMed  Google Scholar 

  27. S. V. Kotov, Yu. A. Belova, M. M. Shcherbakova, et al., “Recovery of speech function in patients with aphasia in the early recovery period of ischemic stroke,” Zh. Nevrol. Psikhiatr., 117, No. 2, 38–41 (2017), https://mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatriiim-s-s-korsakova/2017/4/1199772982017041056.

    Article  CAS  Google Scholar 

  28. A. Gómez-Palacio-Schjetnan and M. L. Escobar, “Neurotrophins and synaptic plasticity,” Curr. Top. Behav. Neurosci., 15, 117–136 (2013), https://doi.org/10.1007/7854_2012_231.

    Article  CAS  PubMed  Google Scholar 

  29. F. Angelucci, A. Peppe, G. A. Carlesimo, et al., “A pilot study on the effect of cognitive training on BDNF serum levels in individuals with Parkinson’s disease,” Front. Hum. Neurosci., 9, 130 (2015), https://doi.org/10.3389/fnhum.2015.00130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. F. Yu, F. V. Lin, D. L. Salisbury, et al., “Efficacy and mechanisms of combined aerobic exercise and cognitive training in mild cognitive impairment: study protocol of the ACT trial,” Trials, 19, No. 1, 700 (2018), https://doi.org/10.1186/s13063-018-3054-0.

    Article  PubMed  PubMed Central  Google Scholar 

  31. E. G. Karssemeijer, W. J. Bossers, J. A. Aaronson, et al., “The effect of an interactive cycling training on cognitive functioning in older adults with mild dementia: study protocol for a randomized controlled trial,” BMC Geriatr., 17, No. 1, 73 (2017), https://doi.org/10.1186/s12877-017-0464-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. T. Aguiar, S. Nadeau, R. R. Britto, et al., “Effects of aerobic training on physical activity in people with stroke: protocol for a randomized controlled trial,” Trials, 19, No. 1, 446 (2018), https://doi.org/10.1186/s13063-018-2823-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. L. Paul, S. Brewster, S. Wyke, et al., “Physical activity profiles and sedentary behaviour in people following stroke: a cross-sectional study,” Disabil. Rehabil., 38, No. 4, 362–367 (2016), https://doi.org/10.3109/09638288.2015.1041615.

    Article  PubMed  Google Scholar 

  34. C. Joseph, D. Conradsson, M. Hagströmer, et al., “Objectively assessed physical activity and associated factors of sedentary behavior among survivors of stroke living in Cape Town, South Africa,” Disabil. Rehabil., 40, No. 21, 2509–2515 (2018), https://doi.org/10.1080/09638288.2017.1338761.

    Article  PubMed  Google Scholar 

  35. V. I. Sheregeshev, Yu. V. Plyasova, S. V. Kotov, et al., “Optimization of the rehabilitation process in patients in the acute period of stroke based on mechanotherapy and cognitive stimulation using tablet technologies,” Alman. Klin. Med., 44, 3:369–375 (2016), https://doi.org/10.18786/2072-0505-2016-44-3-369-375.

    Article  Google Scholar 

  36. J. Livingston-Thomas, P. Nelson, S. Karthikeyan, et al., “Exercise and environmental enrichment as enablers of task-specifi c neuroplasticity and stroke recovery,” Neurotherapeutics, 13, No. 2, 395–402 (2016), https://doi.org/10.1007/s13311-016-0423-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. X. Luan, X. Tian, H. Zhang, et al., “Exercise as a prescription for patients with various diseases,” J. Sport Health Sci., 8, No. 5, 422–441 (2019), https://doi.org/10.1016/j.jshs.2019.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  38. R. M. van de Ven, J. I. Buitenweg, B. Schmand, et al., “Brain training improves recovery after stroke but waiting list improves equally: A multicenter randomized controlled trial of a computer-based cognitive flexibility training,” PLoS One, 12, No. 3, e0172993 (2017), https://doi.org/10.1371/journal.pone.0172993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. W. DenBoer, “Cognitive intervention for early stage dementia: Research and techniques,” Appl. Neuropsychol. Adult, 25, No. 6, 562–571 (2018), https://doi.org/10.1080/23279095.2017.1330748.

    Article  PubMed  Google Scholar 

  40. D. Baltaduonienė, R. Kubilius, K. Berškienė, et al., “Change of cognitive functions after stroke with rehabilitation systems,” Transl. Neurosci., 10, 118–124 (2019), https://doi.org/10.1515/tnsci-2019-0020.

    Article  PubMed  PubMed Central  Google Scholar 

  41. S. Ge, Z. Zhu, B. Wu, and E. S. McConnell, “Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review,” BMC Geriatr., 18, No. 1, 213 (2018), https://doi.org/10.1186/s12877-018-0893-1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. S. V. Prokopenko, T. V. Dyadyuk, E. Yu. Mozheiko, et al., “Use of computerized stimulation programs in patients with poststroke cognitive impairments,” Nevrol. Neiropsikh. Psikhosom., 9, No. 3, 48–53 (2017), https://nnp.ima-press.net.

    Google Scholar 

  43. B. Starovasnik Žagavec, V. Mlinarič Lešnik, and N. Goljar, “Training of selective attention in work-active stroke patients,” Int. J. Rehabil. Res., 38, No. 4, 370–372 (2015), https://doi.org/10.1097/MRR.0000000000000127.

    Article  PubMed  Google Scholar 

  44. Y. Y. Lee, C. Y. Wu, C. H. Teng, et al., “Evolving methods to combine cognitive and physical training for individuals with mild cognitive impairment: study protocol for a randomized controlled study,” Trials, 17, No. 1, 526 (2016), https://doi.org/10.1186/s13063-016-1650-4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. S. V. Prokopenko, A. F. Bezdenezhnykh, E. Yu. Mozheiko, and E. M. Zubritskaya, “Effi cacy of computerized cognitive training in patients with posstroke cognitive impairments,” Zh. Nevrol. Psikhiatr., 117, No. 8–2, 32–36 (2017), https://mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2017/4/1199772982017041056.

    Article  CAS  Google Scholar 

  46. O. V. Kubryak, S. S. Grokhovskii, E. V. Isakova, and S. V. Kotov, Biological Feedback for the Support Reaction: Methodology and Therapeutic Aspects, Moscow (2015), ISBN: 978-5-9906966-9-3.

  47. S. V. Kotov, E. V. Isakova, and V. I. Sheregeshev, “Potential for correction of emotional and behavioral impairments in stroke patients during rehabilitation therapy,” Zh. Nevrol. Psikhiatr., 119, No. 4, 26–31 (2019), https://mediasphera.ru/issues/zhurnal-nevrologii-ipsikhiatrii-im-s-s-korsakova/2017/4/1199772982017041056.

    Article  CAS  Google Scholar 

  48. Z.-C. Lin, J. Tao, Y.-L. Gao, et al., “Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Restingstate functional magnetic resonance imaging study,” J. Int. Med. Res., 42, No. 3, 659–668 (2014), https://doi.org/10.1177/0300060513505809.

    Article  PubMed  Google Scholar 

  49. F. Steinberg, N. H. Pixa, and F. Fregni, “A review of acute aerobic exercise and transcranial direct current stimulation effects on cognitive functions and their potential synergies,” Front. Hum. Neurosci., 12, 534 (2019), https://doi.org/10.3389/fnhum.2018.00534.

    Article  PubMed  PubMed Central  Google Scholar 

  50. N. Ward, E. Paul, P. Watson, et al., “Enhanced learning through multimodal training: evidence from a comprehensive cognitive, physical fitness, and neuroscience intervention,” Sci. Rep., 7, No. 1, 5808 (2017), https://doi.org/10.1038/s41598-017-06237-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. P. Mariën and R. Borgatti, “Language and the cerebellum,” Handb. Clin. Neurol., 154, 181–202 (2018), https://doi.org/10.1016/B978-0-444-63956-1.00011-4.

    Article  PubMed  Google Scholar 

  52. A. K. Rogge, B. Röder, A. Zech, et al., “Balance training improves memory and spatial cognition in healthy adults,” Sci. Rep., 7, No. 1, 5661 (2017), https://doi.org/10.1038/s41598-017-06071-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. K. Rogge, B. Röder, A. Zech, and K. Hötting, “Exercise-induced neuroplasticity: Balance training increases cortical thickness in visual and vestibular cortical regions,” Neuroimage, 179, 471–479 (2018), https://doi.org/10.1016/j.neuroimage.2018.06.065.

    Article  PubMed  Google Scholar 

  54. O. V. Kubryak, E. V. Isakova, S. V. Kotov, et al., “Increases in vertical stability of patients in the acute period of ischemic stroke,” Zh. Nevrol. Psikhiatr., 114, No. 12–2, 61–65 (2014), https://mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2017/4/1199772982017041056].

    Article  Google Scholar 

  55. M. V. Romanova, O. V. Kubryak, E. V. Isakova, et al., “Objective impairments to balance and stability in stroke patients in the early recovery period,” Ann. Klin. Eksperim. Nevrol., 8, No. 2, 12–15 (2014), https://annaly-nevrologii.com.

    Google Scholar 

  56. M. V. Romanova, O. V. Kubryak, E. V. Isakova, et al., “Questions of the standardization of stabilometric methods in clinical neurology practice,” Probl. Standart. Zdravookhr., No. 3–4, 23–27 (2014), https://www.zdravkniga.net/ps.

    Google Scholar 

  57. Yu. V. Egorova, V. I. Shergeshev, E. V. Isakova, et al., “Rehabilitation of elderly patients with cognitive impairments in the early recovery period of ischemic stroke using biological feedback with multichannel muscle stimulation,” Klinich. Gerontol., 23, No. 11–12, 97–104 (2017), https://kg.newdiamed.ru.

    Google Scholar 

  58. E. V. Zaitseva and E. V. Isakova, “Efficacy of multimodal stimulation in the rehabilitation of patients after ischemic stroke,” Klinich. Gerontol., 25, No. 3–4, 64–69 (2019), https://kg.newdiamed.ru.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kotov.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 5, Iss. 1, pp. 125–130, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, S.V., Isakova, E.V., Zaitseva, E.V. et al. Multimodal Stimulation in the Neurorehabilitation of Patients with Poststroke Cognitive Impairments. Neurosci Behav Physi 51, 142–146 (2021). https://doi.org/10.1007/s11055-021-01049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01049-7

Keywords

Navigation