Skip to main content
Log in

Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The characterization of Candida albicans strains with different degrees of virulence became very useful to understand the mechanisms of fungal virulence. Then, the objective of this study was to assess and compare the temporal profiles of biofilms formation, gene expression of ALS1, ALS3, HWP1, BCR1, EFG1, TEC1, SAP5, PLB2 and LIP9 and virulence in Galleria mellonella of C. albicans ATCC18804 and a clinical sample isolated from an HIV-positive patient (CA60). Although the CFU/mL counting was higher in biofilms formed in vitro by ATCC strain, the temporal profile of the analysis of the transcripts of the C. albicans strains was elevated to Ca60 compared to strain ATCC, especially in the genes HWP1, ALS3, SAP5, PLB2 and LIP9 (up regulation). Ca60 was more pathogenic for G. mellonella in the survival assay (p = 0.0394) and hemocytes density (p = 0.0349), agreeing with upregulated genes that encode the expression of hyphae and hydrolase genes of Ca60. In conclusion, the C. albicans strains used in this study differ in the amount of biofilm formation, virulence in vivo and transcriptional profiles of genes analyzed that can change factors associated with colonization, proliferation and survival of C. albicans at different niches. SAP5 and HWP1 were the genes more expressed in the formation of biofilm in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Colombo AL, Guimarães T, Camargo LFA, et al. Brazilian guidelines for the management of candidiasis: a joint meeting report of three medical societies. Braz J Infect Dis. 2013;17:283–312.

    Article  PubMed  Google Scholar 

  2. Mayer LF, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Agwu E, Ihongbe JC, McManus BA, et al. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda. Med Mycol. 2012;50:276–80.

    Article  CAS  PubMed  Google Scholar 

  4. Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.

    Article  PubMed  Google Scholar 

  5. Hube B. From comensal to pathogen: stage-and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7:336–41.

    Article  CAS  PubMed  Google Scholar 

  6. Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11:753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9:109–18.

    Article  CAS  PubMed  Google Scholar 

  8. Fox PE, Nobile JC. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012;3:315–22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nobile CJ, Mitchell AP. Regulation of cell surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15:1150–5.

    Article  CAS  PubMed  Google Scholar 

  10. Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8:1382–91.

    Article  CAS  PubMed  Google Scholar 

  11. Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2:e63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pierce VJ, Kumamoto AC. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio. 2012;3:e00117-12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fanning S, Xu W, Solis N, Woolford CA, et al. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukar Cell. 2012;11:896–904.

    Article  CAS  Google Scholar 

  15. Naglik JR, Rodgers CA, Shirlaw PJ, et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in human correlates with active oral and vaginal infections. J Infect Dis. 2003;188:469–79.

    Article  CAS  PubMed  Google Scholar 

  16. Naglik JR, Challacombe SJ, Hube B. Candida albicans aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol. 2003;67:400–28.

    Article  CAS  Google Scholar 

  17. Naglik JR, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004;6:915–26.

    Article  CAS  PubMed  Google Scholar 

  18. Naglik JR, Moyes D, Makwana J, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology. 2008;154:3266–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nailis H, Kucharíková S, Řičicová M, et al. Real- time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 2010;10:114.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis. 2007;7:42–55.

    Article  PubMed  Google Scholar 

  21. Arvantis M, Glavis-Bloom J, Mylonakis E. C.elegans for anti-infective discovery. Curr Opin Pharmacol. 2013;13:769–74.

    Article  Google Scholar 

  22. Fedhila S, Buisson C, Dussurget O, et al. Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol. 2010;103:24–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chibebe Junior J, Fuchs BB, Sabino CP, et al. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS ONE. 2013;8(2):e55926.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chibebe Junior J, Sabino CP, Tan X, et al. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol. 2013;13:217.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Junqueira JC, Fuchs BB, Muhammed M, et al. Oral Candida albicans from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates. BMC Microbiol. 2011;4:247.

    Article  Google Scholar 

  27. Seneviratne CJ, Silva WJ, Jin LJ, et al. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch Oral Biol. 2009;54:1052–60.

    Article  CAS  PubMed  Google Scholar 

  28. Costa ACBP, Pereira AC, Freire F, et al. Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses. 2013;56:614–22.

    Article  PubMed  Google Scholar 

  29. Nailis H, Coenye T, Van Nieuwerburgh F, et al. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real- time PCR. BMC Mol Biol. 2006;4:7–25.

    Article  Google Scholar 

  30. Hnisz D, Bardet AF, Nobile CJ, et al. A Histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 2012;8:e1003118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  32. Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol. 2000;27:163–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5:608–11.

    Article  CAS  PubMed  Google Scholar 

  34. Taff HT, Nett JE, Andes DR. Comparative analysis of Candida biofilm quantitation assays. Med Mycol. 2012;50:214–8.

    Article  PubMed  Google Scholar 

  35. Ramage G, VandeWalle K, Wickes LB, López RJC. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 2001;18:163–70.

    CAS  PubMed  Google Scholar 

  36. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sánchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R. Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol. 2013;58:1318–26.

    Article  PubMed  Google Scholar 

  38. Ding X, Liu Z, Su J, Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014;14:80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buu LM, Chen YC. Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans. J Biomed Sci. 2014;21:22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Semlali A, Killer K, Alanazi H, Chmielewski W, et al. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol. 2014;14:61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yeater KM, Chandra J, Cheng G, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153:2373–85.

    Article  CAS  PubMed  Google Scholar 

  42. Samaranayake YH, Cheung BPK, Yau JYY, et al. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE. 2013;8:e62902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vilela SF, Barbosa JO, Rossoni RD, et al. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015;6:29–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossoni RD, Barbosa JO, Vilela SFG, et al. Competitive Interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental Candidiasis. PLoS ONE. 2015;10:e0131700.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bergin D, Brennan M, Kavanagh K. Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect. 2003;5:1389–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the São Paulo Council of Research—FAPESP, Brazil (Grants 2011/15194-0, 2012/15250-0 and 2012/02184-9) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Pimentel de Barros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, P.P., Rossoni, R.D., De Camargo Ribeiro, F. et al. Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains. Mycopathologia 182, 285–295 (2017). https://doi.org/10.1007/s11046-016-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0088-2

Keywords

Navigation