Skip to main content

Advertisement

Log in

Breast cancer in the era of precision medicine

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogeneous disorder with different molecular subtypes and biological characteristics for which there are diverse therapeutic approaches and clinical outcomes specific to any molecular subtype. It is a global health concern due to a lack of efficient therapy regimens that might be used for all disease subtypes. Therefore, treatment customization for each patient depending on molecular characteristics should be considered. Precision medicine for breast cancer is an approach to diagnosis, treatment, and prevention of the disease that takes into consideration the patient’s genetic makeup. Precision medicine provides the promise of highly individualized treatment, in which each individual breast cancer patient receives the most appropriate diagnostics and targeted therapies based on the genetic profile of cancer. The knowledge about the molecular features and development of breast cancer treatment approaches has increased, which led to the development of new targeted therapeutics. Tumor genomic profiling is the standard of care for breast cancer that could contribute to taking steps to better management of malignancies. It holds great promise for accurate prognostication, prediction of response to common systemic therapies, and individualized monitoring of the disease. The emergence of targeted treatment has significantly enhanced the survival of patients with breast cancer and contributed to reducing the economic costs of the health system. In this review, we summarized the therapeutic approaches associated with the molecular classification of breast cancer to help the best treatment selection specific to the target patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38(6):698–707

    Article  CAS  PubMed  Google Scholar 

  2. Bradbury AR, Olopade OI (2007) Genetic susceptibility to breast cancer. Rev Endocr Metab Disord 8(3):255–267

    Article  PubMed  Google Scholar 

  3. Kim H, Choi DH (2013) Distribution of BRCA1 and BRCA2 mutations in Asian patients with breast cancer. J breast cancer 16(4):357

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skol AD, Sasaki MM, Onel K (2016) The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res 18(1):1–8

    Article  Google Scholar 

  5. Rizzolo P, Silvestri V, Falchetti M, Ottini L (2011) Inherited and acquired alterations in development of breast cancer. Appl Clin Genet 4:145

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Godet I, Gilkes DM (2017) BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther 4(1)

  7. Claus EB, Risch N, Thompson WD (1994) Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73(3):643–651

    Article  CAS  PubMed  Google Scholar 

  8. American Cancer Society Breast Cancer. https://www.cancerorg/cancer/breast-cancerhtml

  9. World Health Organization (WHO) (2020) Breast cancer. https://wwww.hoint/cancer/prevention/diagnosis-screening/breast-cancer/en/

  10. Toss T, Cristofanilli A M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17(1):1–11

    Article  CAS  Google Scholar 

  11. Polyak K (2011) Heterogeneity in breast cancer. J Clin Investig 121(10):3786–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Apostolou P, Fostira F (2013) Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int 2013; 2013:747318

  13. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M (2010) Genetic susceptibility to breast cancer. Mol Oncol 4(3):174–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Godet I, Gilkes DM (2017) BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther 4(1). https://doi.org/10.15761/ICST.1000228

  15. Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R (2021) Genetic Influences in Breast Cancer Drug Resistance. Breast Cancer 13:59–85

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shattuck-Eidens D, McClure M, Simard J, Labrie F, Narod S, Couch F et al (1995) A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene: implications for presymptomatic testing and screening. JAMA 273(7):535–541

    Article  CAS  PubMed  Google Scholar 

  17. Han Y, Yu X, Li S, Tian Y, Liu C (2020) New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 25:10:578095

    Article  Google Scholar 

  18. Mahdavi M, Nassiri M, Kooshyar MM, Vakili-Azghandi M, Avan A, Sandry R et al (2019) Hereditary breast cancer; Genetic penetrance and current status with BRCA. J Cell Physiol 234(5):5741–5750

    Article  CAS  PubMed  Google Scholar 

  19. Mehrgou A, Akouchekian M (2016) The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 15:30:369

    Google Scholar 

  20. Shiovitz S, Korde LA (2015) Genetics of breast cancer: a topic in evolution. Ann Oncol 26(7):1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaur RP, Vasudeva K, Kumar R, Munshi A (2018) Role of p53 gene in breast cancer: focus on mutation spectrum and therapeutic strategies. Curr Pharm Des 24(30):3566–3575

    Article  CAS  PubMed  Google Scholar 

  22. Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4(2):1–7

    Article  Google Scholar 

  23. Duffy MJ, Synnott NC, Crown J (2018) Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat 170(2):213–219

    Article  CAS  PubMed  Google Scholar 

  24. Kaur RP, Vasudeva K, Kumar R, Munshi AJCpd (2018) Role of p53 gene in breast cancer: focus on mutation spectrum and therapeutic strategies. Curr Pharm Des 24(30):3566–3575

    Article  CAS  PubMed  Google Scholar 

  25. Zhang HY, Liang F, Jia ZL, Song ST, Jiang ZF (2013) PTEN mutation, methylation and expression in breast cancer patients. Oncol Lett 6(1):161–168

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang S-H, Moon B-I, Suh H-S, Sung S-H, Han W-S, Cho M-S et al (2005) Loss of PTEN expression in breast cancers. Korean J Pathol 39(4):236–241

    Google Scholar 

  27. Alkaf A, Al-Jafari A, Wani TA, Alqattan S, Zargar S (2017) Expression of STK11 gene and its promoter activity in MCF control and cancer cells. Biotech 7(6):1–5

    Google Scholar 

  28. Zubair M, Wang S, Ali N (2021) Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 26:11:632079

    Article  Google Scholar 

  29. Ahmed M, Rahman N (2006) ATM and breast cancer susceptibility. Oncogene 25(43):5906–5911

    Article  CAS  PubMed  Google Scholar 

  30. De Jong M, Nolte I, Te Meerman G, Van der Graaf W, Oosterwijk J, Kleibeuker J et al (2002) Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility. J Med Genet 39(4):225–242

    Article  PubMed  PubMed Central  Google Scholar 

  31. Biancolella M, Testa B, Salehi LB, D’Apice MR, Novelli G (2020) Genetics and Genomics of Breast Cancer: update and translational perspectives. Seminars in cancer biology. Elsevier

  32. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X et al (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Board PCGE (2020) Cancer Genetics Risk Assessment and Counseling (PDQ®). PDQ Cancer Information Summaries [Internet]. National Cancer Institute (US)

  34. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68(6):394–424

    Google Scholar 

  35. Vieira AF, Schmitt F (2018) An update on breast cancer multigene prognostic tests—emergent clinical biomarkers. Front Med (Lausanne) 4:5:248

    Article  Google Scholar 

  36. Kittaneh M, Montero AJ, Glück S (2013) Molecular profiling for breast cancer: a comprehensive review. Biomarkers Cancer 5:61–70

    Article  Google Scholar 

  37. Fekih M, Petit T, Zarca D, Guinebretière J-M, André F, Pierga J-Y et al (2014) Use of guidelines and heterogeneity of decision making for adjuvant chemotherapy in hormone-receptor positive, HER2-negative, early breast cancer: results of a French national survey. Bull Cancer 101(10):918–924

    Article  PubMed  Google Scholar 

  38. Fekih M, Petit T, Zarca D, Guinebretière J-M, André F, Pierga J-Y et al (2014) Use of guidelines and heterogeneity of decision making for adjuvant chemotherapy in hormone-receptor positive, HER2-negative, early breast cancer: results of a French national survey. Bull Cancer 101(10):919

    Google Scholar 

  39. Assi H, Bou Zerdan M, Ibrahim M, El Nakib C, Hajjar R (2020) Genomic Assays in Node Positive Breast Cancer Patients: A Review. Front Oncol 10:3461

    Google Scholar 

  40. Slodkowska EA, Ross JS (2009) MammaPrint™ 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn 9(5):417–422

    Article  PubMed  Google Scholar 

  41. Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  42. Chia S (2018) Clinical application and utility of genomic assays in early-stage breast cancer: key lessons learned to date. Curr Oncol 25(s1):125–130

    Article  Google Scholar 

  43. Krijgsman O, Roepman P, Zwart W, Carroll JS, Tian S, de Snoo FA et al (2012) A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Res Treat 133:37–47

    Article  CAS  PubMed  Google Scholar 

  44. Mittempergher L, Delahaye LJ, Witteveen AT, Snel MH, Mee S, Chan BY et al (2020) Performance characteristics of the BluePrint® breast cancer diagnostic test. Transl Oncol 13:100756

    Article  PubMed  PubMed Central  Google Scholar 

  45. Viale G, Hanlon Newell AE, Walker E, Harlow G, Bai I, Russo L et al (2019) Ki-67 (30 – 9) scoring and differentiation of Luminal A-and Luminal B-like breast cancer subtypes. Breast Cancer Res Treat 178:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bou Zerdan M, Ibrahim M, Nakib CE, Hajjar R, Assi HI (2020) Genomic Assays in Node Positive Breast Cancer Patients: A Review. Front Oncol 10:609100

    Article  PubMed  Google Scholar 

  47. Ovcaricek T, Takac I, Matos E (2019) Multigene expression signatures in early hormone receptor positive HER 2 negative breast cancer. Radiol Oncol 53(3):285

    Article  PubMed  PubMed Central  Google Scholar 

  48. Warf MB, Rajamani S, Krappmann K, Doedt J, Cassiano J, Brown K et al (2017) Analytical validation of a 12-gene molecular test for the prediction of distant recurrence in breast cancer. Future Sci OA 3(3):FSO221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Markopoulos C, van de Velde C, Zarca D, Ozmen V, Masetti R (2017) Clinical evidence supporting genomic tests in early breast cancer: Do all genomic tests provide the same information? Eur J Surg Oncol 43(5):909–920

    Article  CAS  PubMed  Google Scholar 

  50. Fayanju OM, Park KU, Lucci A (2018) Molecular genomic testing for breast cancer: utility for surgeons. Ann Surg Oncol 25(2):512–519

    Article  PubMed  Google Scholar 

  51. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):1–11

    Article  Google Scholar 

  52. Sestak I, Buus R, Cuzick J, Dubsky P, Kronenwett R, Denkert C et al (2018) Comparison of the performance of 6 prognostic signatures for estrogen receptor–positive breast cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol 4(4):545–553

    Article  PubMed  PubMed Central  Google Scholar 

  53. Corsinovi D, Usai A, Sarlo M, Giannaccini M, Ori M (2021) Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anti-cancer Agents Med Chem 22(4):748–759

    Article  Google Scholar 

  54. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  55. Thennavan A, Beca F, Xia Y, Garcia-Recio S, Allison K, Collins LC et al (2021) Molecular analysis of TCGA breast cancer histologic types. Cell Genomics 1(3):100067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. do Nascimento RG, Otoni KM (2020) Histological and molecular classification of breast cancer: what do we know? Mastology 30:1–8

    Article  Google Scholar 

  57. Tsang J, Tse GM (2020) Molecular classification of breast cancer. Adv Anat Pathol 27(1):27–35

    Article  CAS  PubMed  Google Scholar 

  58. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR (2014) Molecular classification of breast cancer. Virchows Arch 465(1):1–14

    Article  CAS  PubMed  Google Scholar 

  59. Iqbal N, Iqbal N (2014) Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int 2014:852748

    Article  PubMed  PubMed Central  Google Scholar 

  60. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32

    Article  CAS  Google Scholar 

  61. Wang C, Kar S, Lai X, Cai W, Arfuso F, Sethi G et al (2018) Triple negative breast cancer in Asia: An insider’s view. Cancer Treat Rev 62:29–38

    Article  PubMed  Google Scholar 

  62. Yin L, Duan J-J, Bian X-W, Yu S-c (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22(1):1–13

    Article  Google Scholar 

  63. Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncol (Williston Park NY) 22(11):1233

    Google Scholar 

  64. Hossain F, Majumder S, David J, Miele L (2021) Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions. Cancers 13(15):3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan W, Chang J, Fu P (2015) Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem 7(12):1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Costa B, Amorim I, Gärtner F, Vale N (2020) Understanding breast cancer: From conventional therapies to repurposed drugs. Eur J Pharm Sci 151:105401

    Article  CAS  PubMed  Google Scholar 

  67. Burstein HJ, Lacchetti C, Anderson H, Buchholz TA, Davidson NE, Gelmon KA et al (2019) Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: ASCO clinical practice guideline focused update. J Clin Oncol 37(5):423–438

    Article  CAS  PubMed  Google Scholar 

  68. Zimmer AS, Gillard M, Lipkowitz S, Lee J-M (2018) Update on PARP inhibitors in breast cancer. Curr Treat Options Oncol 19(5):1–19

    Article  Google Scholar 

  69. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JH, Swen JJ et al (2018) Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther 103(2):210–216

    Article  CAS  PubMed  Google Scholar 

  70. Biancolella M, Testa B, Salehi LB, D’Apice MR, Novelli G Genetics and Genomics of Breast Cancer: update and translational perspectives.Semin Cancer Biol 72:27–35

  71. Ayoub J, Verma S, Verma S (2012) Advances in the management of metastatic breast cancer: options beyond first-line chemotherapy. Curr Oncol 19(2):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma CX, Sparano JA (2019) Treatment approach to metastatic hormone receptor-positive, HER2-negative breast cancer: endocrine therapy and targeted agents. UpToDate, Waltham, MA

    Google Scholar 

  73. Roberto M, Astone A, Botticelli A, Carbognin L, Cassano A, D’Auria G et al (2021) CDK4/6 inhibitor treatments in patients with hormone receptor positive, Her2 negative advanced breast cancer: potential molecular mechanisms, clinical implications and future perspectives. Cancers 13(2):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dean L (2019) Tamoxifen therapy and CYP2D6 genotype. Medical Genetics Summaries[updated 2019 May 1]

  75. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    Article  PubMed  Google Scholar 

  76. Piccart M, Hortobagyi GN, Campone M, Pritchard K, Lebrun F, Ito Y et al (2014) Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. Ann Oncol 25(12):2357–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hare S (2018) The Development and Characterisation of Everolimus Resistant Breast Cancer Cells. Brunel University London

  78. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  79. De Abreu F, Schwartz G, Wells W, Tsongalis G (2014) Personalized therapy for breast cancer. Clin Genet 86(1):62–67

    Article  PubMed  Google Scholar 

  80. Cesca MG, Vian L, Cristóvão-Ferreira S, Pondé N, de Azambuja E (2020) HER2-positive advanced breast cancer treatment in 2020. Cancer Treat Rev 88:102033

    Article  CAS  PubMed  Google Scholar 

  81. Kreutzfeldt J, Rozeboom B, Dey N, De P (2020) The trastuzumab era: current and upcoming targeted HER2 + breast cancer therapies. Am J Cancer Res 10(4):1045

    PubMed  PubMed Central  Google Scholar 

  82. Oh D-Y, Bang Y-J (2020) HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol 17(1):33–48

    Article  CAS  PubMed  Google Scholar 

  83. Gradishar W, Salerno KE (2016) NCCN guidelines update: breast cancer. J Natl Compr Cancer Netw 14(5S):641–644

    Article  CAS  Google Scholar 

  84. National Comprehensive Cancer Network (NCCN). NCCN Clinical practice guidelines in oncology: Breast cancer 2020. http://www.nccnorg/

  85. Von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G et al (2017) Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N Engl J Med 377(2):122–131

    Article  Google Scholar 

  86. Steenbruggen T, Bouwer N, Smorenburg C, Rier H, Jager A, Beelen K et al (2019) Radiological complete remission in HER2-positive metastatic breast cancer patients: what to do with trastuzumab? Breast Cancer Res Treat 178(3):597–605

    Article  CAS  PubMed  Google Scholar 

  87. Choong GM, Cullen GD, O’Sullivan CC (2020) Evolving standards of care and new challenges in the management of HER2-positive breast cancer. CA. Cancer J Clin 70(5):355–374

    Article  Google Scholar 

  88. Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE (2010) Lapatinib plus capecitabine in women with HER-2–positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist 15(9):924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cetin B, Benekli M, Turker I, Koral L, Ulas A, Dane F et al (2014) Lapatinib plus capecitabine for HER2-positive advanced breast cancer: a multicentre study of Anatolian Society of Medical Oncology (ASMO). J Chemother 26(5):300–305

    Article  CAS  PubMed  Google Scholar 

  90. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743

    Article  CAS  PubMed  Google Scholar 

  91. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417

    Article  CAS  PubMed  Google Scholar 

  92. Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A et al (2019) PD-1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol 234(10):16824–16837

    Article  CAS  PubMed  Google Scholar 

  93. Caparica R, Lambertini M, de Azambuja E (2019) How I treat metastatic triple-negative breast cancer. ESMO open 4(Suppl 2):e000504

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yoshida K, Miki Y (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95(11):866–871

    Article  CAS  PubMed  Google Scholar 

  95. Ledermann JA (2016) PARP inhibitors in ovarian cancer. Ann Oncol 27(Suppl 1):i40–i44

    Article  PubMed  Google Scholar 

  96. Kristeleit R, Shapiro GI, Burris HA, Oza AM, LoRusso P, Patel MR et al (2017) A Phase I-II Study of the Oral PARP Inhibitor Rucaparib in Patients with Germline BRCA1/2-Mutated Ovarian Carcinoma or Other Solid Tumors. Clin Cancer Res 23(15):4095–4106

    Article  CAS  PubMed  Google Scholar 

  97. de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S et al (2017) Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov 7(6):620–629

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kim DS, Camacho CV, Kraus WL (2021) Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp Mol Med 53(1):42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Slade D (2020) PARP and PARG inhibitors in cancer treatment. Gene Dev 34(5–6):360–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T et al (2015) FDA Approval Summary: Olaparib Monotherapy in Patients with Deleterious Germline BRCA-Mutated Advanced Ovarian Cancer Treated with Three or More Lines of Chemotherapy. Clin Cancer Res 21(19):4257–4261

    Article  CAS  PubMed  Google Scholar 

  101. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18(1):75–87

    Article  CAS  PubMed  Google Scholar 

  102. Vagia E, Mahalingam D, Cristofanilli M (2020) The landscape of targeted therapies in TNBC. Cancers 12(4):916

    Article  CAS  PubMed Central  Google Scholar 

  103. Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK (2015) Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci 36(12):822–846

    Article  CAS  PubMed  Google Scholar 

  104. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F et al (2018) 4th ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 4). Ann Oncol 29(8):1634–1657

    Article  CAS  PubMed  Google Scholar 

  105. Cortes J, O’Shaughnessy J, Loesch D, Blum JL, Vahdat LT, Petrakova K et al (2011) Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377(9769):914–923

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NS conceptualization and drawing of hypothesis for the study and writing the manuscript in collaboration with MG, SFH, AND SHH. FR provided guidance to the research. MH contributed substantially in study design, manuscript writing, editing.

Corresponding authors

Correspondence to Fatemeh Rouhollah or Mandana Hasanzad.

Ethics declarations

Conflict of interest

The authors do not have any financial or non-financial conflict of interest.

Informed consent

All the authors declare their consent for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarhangi, N., Hajjari, S., Heydari, S.F. et al. Breast cancer in the era of precision medicine. Mol Biol Rep 49, 10023–10037 (2022). https://doi.org/10.1007/s11033-022-07571-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07571-2

Keywords

Navigation