Skip to main content

Advertisement

Log in

EGFR-mediated G1/S transition contributes to the multidrug resistance in breast cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Despite the improvement of strategies against cancer therapy, the multidrug resistance (MDR)is the critical problem for successful cancer therapy. Recurrent cancers after initial treatment with chemotherapy are generally refractory to second treatments with these anticancer therapies. Therefore, it is necessary to elucidate the therapy-resistant mechanism for development of effective therapeutic modalities against tumors. Here we demonstrate a phase-specific chemotherapy resistance due to epidermal growth factor receptor (EGFR) in human breast cancer cells. Thymidine-induced G1-arrested cultures showed upregulated chemosensitivity, whereas S-phase arrested cells were more resistant to chemotherapeutic agents. Overexpression of EGFR promoted the MDR phenotypes in breast cancer cells via accelerating the G1/S phase transition, whereas depletion of EGFR exerted the opposite effects. Furthermore, CyclinD1, a protein related to cell cycle, was demonstrated to be involved in above EGFR-mediated effects since EGFR increased the expression of CyclinD1, and the specific RNA interference against CyclinD1 could primarily abolish the EGFR-induced MDR phenotypes. These data provide new insights into the mode by which MDR breast cancers evade cytoxic attacks from chemotherapeutic agents and also suggest a role for EGFR-CyclinD1 axis in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stavrovskaya AA (2000) Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry 65:95–106

    PubMed  CAS  Google Scholar 

  2. Eytan GD (2005) Mechanism of multidrug resistance in relation to passive membrane permeation. Biomed Pharmacother 59:90–97. doi:10.1016/j.biopha.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  3. Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F (2006) The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 7:893–909. doi:10.2174/138945006777709520

    Article  PubMed  CAS  Google Scholar 

  4. Chekhun VF, Lukyanova NY, Yurchenko OV, Kulik GI (2005) The role of expression of the components of proteome in the formation of molecular profile of human ovarian carcinoma A2780 cells sensitive and resistant to cisplatin. Exp Oncol 27:191–195

    PubMed  CAS  Google Scholar 

  5. Chekhun VF, Ganina KP, Kulik GI, Solianik GI, Kunskaia LN, Gushchenko NN (2000) Influence of tumor drug resistance phenotype on the dynamics of cisplatin-induced changes of rat peripheral lymphocyte chromatin structure in Guerin’s carcinoma. Tsitol Genet 34:11–17

    PubMed  CAS  Google Scholar 

  6. Motwani M, Delohery TM, Schwartz GK (1999) Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 5:1876–1883

    PubMed  CAS  Google Scholar 

  7. Motwani M, Schwartz GK (1998) Inappropriate cell cycle progression enhances the induction of apoptosis by flavopiridol in Taxol treated gastric cancer cells. Proc Am Assoc Cancer Res 39:190

    Google Scholar 

  8. Zhou Y, Ling XL, Li SW, Li XQ, Yan B (2010) Establishment of a human hepatoma multidrug resistant cell line in vitro. World J Gastroenterol 16:2291–2297. doi:10.3748/wjg.v16.i18.2291

    Article  PubMed  CAS  Google Scholar 

  9. Zhuang DX, Liu YC, Ying Mao et al (2011) TMZ-induced PrPc/par-4 interaction promotes the survival of human glioma cells. Int J Cancer. doi:10.1002/ijc.25985

  10. Mirski SE, Gerlach JH, Cole SP (1987) Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res 47:2594–2598

    PubMed  CAS  Google Scholar 

  11. Li QQ, Wang WJ, Xu JD et al (2007) Up-regulation of CD147 and matrix metalloproteinase-2, -9 induced by P-glycoprotein substrates in multidrug resistant breast cancer cells. Cancer Sci 98:1767–1774. doi:10.1111/j.1349-7006.2007.00593.x

    Article  PubMed  CAS  Google Scholar 

  12. Li QQ, Chen ZQ, Xu JD et al (2010) Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci 101:80–86. doi:10.1111/j.1349-7006.2009.01372.x

    Article  PubMed  CAS  Google Scholar 

  13. Srivastava SK, Singh S (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferation activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709. doi:10.1093/carcin/bgh179

    Article  PubMed  CAS  Google Scholar 

  14. Meyers MB, Merluzzi VJ, Spengler BA, Biedler JL (1986) Epidermal growth factor receptor is increased in multidrug-resistant Chinese hamster and mouse tumor cells. Proc Natl Acad Sci 83:5521–5525. doi:10.1073/pnas.83.15.5521

    Article  PubMed  CAS  Google Scholar 

  15. Meyers MB, Shen WP, Spengler BA et al (1988) Epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J Cell Biochem 38:87–97. doi:10.1002/jcb.240380203

    Article  PubMed  CAS  Google Scholar 

  16. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555. doi:10.1016/0092-8674(94)90540-1

    Article  PubMed  CAS  Google Scholar 

  17. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247

    PubMed  CAS  Google Scholar 

  18. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:21–26. doi:10.1016/j.ijrobp.2003.11.041

    Article  PubMed  CAS  Google Scholar 

  19. Garcia R, Franklin RA, McCubrey JA (2006) EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells. Cell Cycle 5:2820–2826. doi:10.4161/cc.5.23.3535

    Article  PubMed  CAS  Google Scholar 

  20. Kitazaki T, Oka M, Nakamura Y et al (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343. doi:10.1016/j.lungcan.2005.03.035

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China (No. 81000957). We thank members of our laboratory for helpful discussions.

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian-Hong Wang.

Additional information

Shu-Jun Chen and Jing Luan contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SJ., Luan, J., Zhang, HS. et al. EGFR-mediated G1/S transition contributes to the multidrug resistance in breast cancer cells. Mol Biol Rep 39, 5465–5471 (2012). https://doi.org/10.1007/s11033-011-1347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1347-4

Keywords

Navigation