Skip to main content
Log in

Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

TCF7L2 and SLC30A8 have been found to be associated with type 2 diabetes mellitus (T2DM) as well as with impaired proinsulin processing recently, enzymes encoded by PCSK1 and PCSK2 are reported to play an important role in the process of proinsulin conversion. To investigate whether the single nucleotide polymorphisms (SNPs) of TCF7L2, SLC30A8, PCSK1 and PCSK2 were associated with T2DM as well as with proinsulin conversion in a Han Chinese population from Chongqing. A case–control study was performed in Han Chinese subjects with normal control (n = 152) and T2DM (n = 227), we genotyped rs7903146 and rs11196218 at TCF7L2, rs13266634 at SLC30A8, rs3811951 at PCSK1 and rs2021785 at PCSK2. Plasma levels of proinsulin were measured with an Enzyme Linked Immunosorbent Assay (ELISA). Genotype distribution and associations with T2DM and fasting levels of proinsulin and proinsulin/insulin ratios were analyzed. We confirmed the association of risk allele of rs2021785 at PCSK2 with type 2 diabetes also existed in Han Chinese population [OR = 1.4489 with 95% CI (1.0285, 2.0412), P = 0.0335]. Rs13266634 at SLC30A8 had a tendency to be associated with fasting plasma levels of proinsulin (P = 0.0639 in additive model). We did not find the significant association between other SNPs and T2DM or fasting levels of proinsulin or proinsulin/insulin ratios. Our results provide evidence that the association of PCSK2 and T2DM was also existed in Han Chinese population in Chongqing. We were underpowered to detect the association between other SNPs and T2DM or proinsulin conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204(1):1–11

    Article  PubMed  CAS  Google Scholar 

  2. Dostou J, Gerich J (2001) Pathogenesis of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 109(Suppl 2):S149–S156

    Article  PubMed  CAS  Google Scholar 

  3. Sladek R, Rocheleau G, Rung J et al (2007) Genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  PubMed  CAS  Google Scholar 

  4. Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601

    Article  PubMed  CAS  Google Scholar 

  5. Chauhan G, Spurgeon CJ, Tabassum R et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2 and CDKAL1 on the risk of type 2 diabetes in 5164 Indians. Diabetes 59(8):2068–2074

    Article  PubMed  CAS  Google Scholar 

  6. Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  PubMed  CAS  Google Scholar 

  7. Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  PubMed  CAS  Google Scholar 

  8. Khalooghi K, Hashemi S, Mehraban N et al (2009) In vitro modulation of TCF7L2 gene expression in human pancreatic cells. Mol Biol Rep 36(8):2329–2332

    Article  PubMed  CAS  Google Scholar 

  9. Nordman S, Ostenson CG, Efendic S et al (2009) Loci of TCF7L2, HHEX and IDE on chromosome 10q and the susceptibility of their genetic polymorphisms to type 2 diabetes. Exp Clin Endocrinol Diabetes 117(4):186–190

    Article  PubMed  CAS  Google Scholar 

  10. Weedon MN, McCarthy MI, Hitman G et al (2006) Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 3:e374

    Article  PubMed  Google Scholar 

  11. Zeggini E, McCarthy MI (2007) TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia 50:1–4

    Article  PubMed  CAS  Google Scholar 

  12. LoosRJ FranksPW, Francis RW et al (2007) TCF7L2 polymorphisms modulate proinsulin levels and ß-cell function in a British Europid population. Diabetes 56:1943–1947

    Article  Google Scholar 

  13. Dahlgren A, Zethelius B, Jensevik K et al (2007) Variants of the TCF7L2 gene are associated with beta cell dysfunction and confer an increased risk of type 2 diabetes mellitus in the ULSAM cohort of Swedish elderly men. Diabetologia 50:1852–1857

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez-Sanchez J, Martinez-Larrad M, Zabena C et al (2008) Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin: insulin ratio in the Spanish population. Diabetologia 51:1993–1997

    Article  PubMed  CAS  Google Scholar 

  15. Stolerman ES, Manning AK, McAteer JB et al (2009) TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52:614–620

    Article  PubMed  CAS  Google Scholar 

  16. Ng MC, Tam CH, Lam VK et al (2007) Replication, identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab 92(9):3733–3737

    Article  PubMed  CAS  Google Scholar 

  17. Chang YC, Chang TJ, Jiang YD et al (2007) Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56(10):2631–2637

    Article  PubMed  CAS  Google Scholar 

  18. Ren Q, Han XY, Wang F et al (2008) Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia 51(7):1146–1152

    Article  PubMed  CAS  Google Scholar 

  19. Chimienti F, Favier A, Seve M (2005) ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18(4):313–317

    Article  PubMed  CAS  Google Scholar 

  20. Chimienti F, Devergnas S, Favier A et al (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337

    Article  PubMed  CAS  Google Scholar 

  21. Xiang J, Li XY, Xu M et al (2008) Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J Clin Endocrinol Metab 93(10):4107–4112

    Article  PubMed  CAS  Google Scholar 

  22. Cauchi S, Del Guerra S, Choquet H et al (2010) Meta-analysis and functional effects of the SLC 30A 8 rs13266634 polymorphism on isolated human pancreatic islets. Mol Genet Metab 100(1):77–82

    Google Scholar 

  23. Malide D, Seidah NG, Chrétien M et al (1995) Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic beta-cells. J Histochem Cytochem 43(1):11–19

    Article  PubMed  CAS  Google Scholar 

  24. Chang YC, Chiu YF, Shih KC et al (2010) Common PCSK1 haplotypes are associated with obesity in the Chinese population. Obesity (Silver Spring) 18(7):1404–1409

    Article  CAS  Google Scholar 

  25. Yoshida H, Ohagi S, Sanke T et al (1995) Association of the prohormone convertase 2 gene (PCSK2) on chromosome 20 with NIDDM in Japanese subjects. Diabetes 44(4):389–393

    Article  PubMed  CAS  Google Scholar 

  26. Leak TS, Keene KL, Langefeld CD et al (2007) Association of the proprotein convertase subtilisin/kexin-type 2 (PCSK2) gene with type 2 diabetes in an African American population. Mol Genet Metab 92(1–2):145–150

    Article  PubMed  CAS  Google Scholar 

  27. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. 1. Diagnosis and classification of diabetes mellitus, provisional report of a WHO consultation. Diabetes Medicine 15:539–553

    Article  CAS  Google Scholar 

  28. Pang C, Bao YQ, Wang C et al (2008) Relationship between the level of fasting plasma glucose and beta cell functions in Chinese with or without diabetes. Chin Med J (Engl). 121(21):2119–2123

    CAS  Google Scholar 

  29. Kim Sobin, Misra Ashish (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  PubMed  CAS  Google Scholar 

  30. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98

    Article  PubMed  CAS  Google Scholar 

  31. Furuta M, Carroll R, Martin S et al (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31, 32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273(6):3431–3437

    Article  PubMed  CAS  Google Scholar 

  32. Jia EZ, Wang J, Yang ZJ et al (2009) Association of the mutation for the human carboxypeptidase E gene exon 4 with the severity of coronary artery atherosclerosis. Mol Biol Rep 36(2):245–254

    Article  PubMed  CAS  Google Scholar 

  33. Lin E, Pei D, Huang YJ et al (2009) Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes. Genet Test Mol Biomarkers 13(4):485–493

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Medical Science Research Fund of Chongqing Health Bureau (Number: 2008-2-96) and the Medical Science Research Fund of the First Affiliated Hospital of Chongqing Medical University. (Number: YXJ2009-03).

Conflict of interest

All authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Ren, W., Zhang, S. et al. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep 39, 17–23 (2012). https://doi.org/10.1007/s11033-011-0705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0705-6

Keywords

Navigation