Skip to main content
Log in

Angiotensin II increases secreted frizzled-related protein 5 (sFRP5) expression through AT1 receptor/Rho/ROCK1/JNK signaling in cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Secreted frizzled-related protein 5 (sFRP5) is a novel adipokine that functions as an inhibitor of Wnt signaling and is involved in embryonic development, proliferation, atherosclerosis, and apoptosis. Studies have shown that sFRP1-4 is expressed in cardiomyocytes, and sFRP3 and sFRP4 are elevated during heart failure. However, it is unclear whether sFRP5 is expressed in cardiomyocytes or cardiac hypertrophy, and as regards the effects of sFRP5 in the process. Here, we report the expression and the corresponding mechanisms of sFRP5 in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. Neonatal rat ventricular myocytes were exposed to increasing concentrations of Ang II for 12–72 h. Y27632 was used to block ROCK signal. PD98059, SB203580, and SP600125 were used to inhibit ERK1/2, p38 MAPK, and JNK signaling pathways, respectively, and anisomycin was used to activate JNK pathway. RT-PCR and Western-blot determined the expressions of sFRP5. BNP, TNF-α, ROCK1, ROCK2, MYPT1, and JNK were examined through Western-blot analysis. Ang II increased sFRP5 mRNA and protein levels in a time- and dose-dependent manner. Telmisartan, Y27632 and SP600125 effectively suppressed the expression of sFRP5. sFRP5 downregulated BNP and TNF-α expressions in hypertrophic cardiomyocytes. sFRP5 is expressed in cardiomyocytes, and upregulated in Ang II-induced cardiomyocyte hypertrophy through the AT1 receptor/Rho/ROCK1/JNK signaling pathway. sFRP5 may play an important role during cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kai H (2006) Cardiac remodeling in chronic heart failure. Nihon Rinsho 64:855–860

    PubMed  Google Scholar 

  2. Rosenbaugh EG, Savalia KK, Manickam DS, Zimmerman MC (2013) Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 304:R917–R928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Makino N, Sugano M, Otsuka S, Hata T (1997) Molecular mechanism of angiotensin II type I and type II receptors in cardiac hypertrophy of spontaneously hypertensive rats. Hypertension 30:796–802

    Article  CAS  PubMed  Google Scholar 

  4. ter Horst P, Smits JF, Blankesteijn WM (2012) The Wnt/frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol (Oxf) 204:110–117

    Article  Google Scholar 

  5. Dawson K, Aflaki M, Nattel S (2013) Role of the Wnt-frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 591:1409–1432

    Article  PubMed Central  PubMed  Google Scholar 

  6. Almario RU, Karakas SE (2015) Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation. Horm Metab Res 47:152–157

    CAS  PubMed  Google Scholar 

  7. Nakamura K, Fuster JJ, Walsh K (2014) Adipokines: a link between obesity and cardiovascular disease. J Cardiol 63(4):250–259

    Article  PubMed Central  PubMed  Google Scholar 

  8. Schumann H, Holtz J, Zerkowski HR, Hatzfeld M (2000) Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45:720–728

    Article  CAS  PubMed  Google Scholar 

  9. Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569–3572

    Article  CAS  PubMed  Google Scholar 

  10. Lakshmanan AP, Harima M, Sukumaran V, Soetikno V, Thandavarayan RA, Suzuki K, Kodama M, Nagata M, Takagi R, Watanabe K (2012) Modulation of AT-1R/AMPK-MAPK cascade plays crucial role for the pathogenesis of diabetic cardiomyopathy in transgenic type 2 diabetic (spontaneous diabetic torii) rats. Biochem Pharmacol 83(5):653–660

    Article  CAS  PubMed  Google Scholar 

  11. Hagenmueller M, Riffel JH, Bernhold E, Fan J, Zhang M, Ochs M, Steinbeisser H, Katus HA, Hardt SE (2013) Dapper-1 induces myocardial remodeling through activation of canonical Wnt signaling in cardiomyocytes. Hypertension 61:1177–1183

    Article  CAS  PubMed  Google Scholar 

  12. Hlubek F, Spaderna S, Schmalhofer O, Jung A, Kirchner T, Brabletz T (2007) Wnt/FZD signaling and colorectal cancer morphogenesis. Front Biosci 12:458–470

    Article  CAS  PubMed  Google Scholar 

  13. Jaikanth C, Gurumurthy P, Indhumathi T, Cherian KM (2014) Emergence of sfrp5 as a pleiotropic adipocytokine and its association with Wnt signaling. Minerva Endocrinol [Epub ahead of print]

  14. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, Akasaki Y, Shimono A, Walsh K (2010) Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329:454–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Carstensen M, Wiza C, Röhrig K, Fahlbusch P, Roden M, Herder C, Ouwens DM (2014) Effect of Sfrp5 on cytokine release and insulin action in primary human adipocytes and skeletal muscle cells. PLoS One 9:e85906

    Article  PubMed Central  PubMed  Google Scholar 

  16. Miyoshi T, Doi M, Usui S, Iwamoto M, Kajiya M, Takeda K, Nosaka K, Nakayama R, Okawa K, Takagi W, Nakamura K, Hirohata S, Ito H (2014) Low serum level of secreted frizzled-related protein 5, an anti-inflammatory adipokine, is associated with coronary artery disease. Atherosclerosis 233:454–459

    Article  CAS  PubMed  Google Scholar 

  17. Guo B, Li Y, Han R, Zhou H, Wang M (2011) Angiotensin II upregulation of cardiomyocyte adiponectin production is nitric oxide/cyclic GMP dependent. Am J Med Sci 341:350–355

    Article  PubMed  Google Scholar 

  18. Carstensen M, Herder C, Kempf K, Erlund I, Martin S, Koenig W, Sundvall J, Bidel S, Kuha S, Roden M, Tuomilehto J (2013) SFRP5 correlates with insulin resistance and oxidative stress. Eur J Clin Invest 43:350–357

    Article  CAS  PubMed  Google Scholar 

  19. Akazawa H, Komuro I (2012) Mechanisms underlying angiotensin II-independent activation of angiotensinII type 1 receptor. Nihon Rinsho 70:1492–1498

    PubMed  Google Scholar 

  20. Matsubara H, Mori Y, Masaki H, Inada M (1998) Pathophysiological function of angiotensin II AT1 and AT2 receptors and clinical application of AT1 antagonists. Nihon Rinsho 56:1912–1918

    CAS  PubMed  Google Scholar 

  21. Wang X, Lu J, Khaidakov M, Mitra S, Ding Z, Goyal T, Mehta JL (2012) Delineation of the effects of angiotensin type 1 and 2 receptors on HL-1 cardiomyocyte apoptosis. Apoptosis 17:908–915

    Article  CAS  PubMed  Google Scholar 

  22. Balakumar P, Jagadeesh G (2014) A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 26:2147–2160

    Article  CAS  PubMed  Google Scholar 

  23. Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, Takuwa Y, Sasaki T, Rothstein JD, Suzuki H, Nakashima H, Woolfolk EA, Motley ED, Eguchi S (2005) Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol 25:1831–1836

    Article  CAS  PubMed  Google Scholar 

  24. Ocaranza MP, Rivera P, Novoa U, Pinto M, González L, Chiong M, Lavandero S, Jalil JE (2011) Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in experimental hypertension. J Hypertens 29:706–715

    Article  CAS  PubMed  Google Scholar 

  25. Liu PY, Liao JK (2008) A method for measuring Rho kinase activity in tissues and cells. Methods Enzymol 439:181–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ, Wei L (2006) Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J 20:916–925

    Article  CAS  PubMed  Google Scholar 

  27. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from The Nature Science Foundation of Hebei Province (Grant No. H2014206389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Guo, B., Yan, J. et al. Angiotensin II increases secreted frizzled-related protein 5 (sFRP5) expression through AT1 receptor/Rho/ROCK1/JNK signaling in cardiomyocytes. Mol Cell Biochem 408, 215–222 (2015). https://doi.org/10.1007/s11010-015-2497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2497-9

Keywords

Navigation