Skip to main content

Advertisement

Log in

Effects of 5′-azacytidine and alendronate on a hepatocellular carcinoma cell line: a proteomics perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer related deaths around the world. Due to late diagnosis and development of drug resistance in patients suffering from HCC, development of more effective therapeutic strategies is inevitable. The aim of this study was to evaluate the combined apoptotic effect of 5′-Azacytidine (5′-AzaC) and alendronate (ALN) on Huh-7 HCC cell line and to explore differential expression at genomics and proteomics level. Incubation of HCC cell line with 5′-AzaC alone showed cell death in a time and dose dependent manner while in combination with ALN, increased cytotoxicity was observed. Up-regulation of CASP7(Caspase7) and LZTS1 (leucine zipper, putative tumor suppressor 1) and down-regulation of DNMT1(DNA (cytosine-5-)-methyltransferase 1) was noted in treated cells. Proteomic studies on the treated cells revealed altered expression of different proteins including peroxiredoxin 2 (Prx2), Annexin 5 (Anx5), Rho GTPase activating protein (RhoGAP), Nuclear factor-kappa B (NF-kB), tumor necrosis factor alpha-induced protein (TNF), triosephosphate isomerase (TPI), Glutathione S transferase (GSTP1) and Heat shock protein60 (HSP60). Our study demonstrated the cytotoxic effect of 5′-AzaC and ALN drug combination on Huh-7 HCC cells suggesting such combinations may be explored as a possible therapeutic approach. Current study revealed that Huh-7 HCC cells are sensitive to 5′-AzaC and ALN drug combination and such combination approaches could lead to the development of new therapeutic strategies. Furthermore, we also report the expression of Anx5 exclusively in untreated cancerous cell line indicating the possibility of being used as a potential therapeutic target and biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Datta J, Kutay H, Nasser MW et al (2008) Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  CAS  PubMed  Google Scholar 

  4. Girault I, Tozlu S, Lidereau R, Bièche I (2003) Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9:4415–4422

    CAS  PubMed  Google Scholar 

  5. Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993

    Article  CAS  PubMed  Google Scholar 

  6. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R (2005) FDA drug approval summary: azacitidine (5-Azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–182

    Article  CAS  PubMed  Google Scholar 

  7. Esteller M (2005) DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 17:55–60

    Article  CAS  PubMed  Google Scholar 

  8. Baylin SB (2004) Reversal of gene silencing as a therapeutic target for cancer-roles for DNA methylation and its interdigitation with chromatin. Novartis Found Symp 259:226–233

    CAS  PubMed  Google Scholar 

  9. Rees DC (2011) The rationale for using hydroxycarbamide in the treatment of sickle cell disease. Haematologica 96:488–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bai S, Tong A, Lau QC et al (2009) Proteomic analysis of liver cancer cells treated with 5-Aza-20 deoxycytidine (AZA). Drug Dev Res 70:22–34

    Article  CAS  Google Scholar 

  11. Fleisch H (1993) New bisphosphonates in osteoporosis. Osteoporos Int 3:15–22

    Article  Google Scholar 

  12. Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT et al (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62:2708–2714

    CAS  PubMed  Google Scholar 

  13. Ottewell PD, Mo¨nkko¨nen H, Jones M, Lefley DV, Coleman RE, Holen I (2008) Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. JNCI 100:1167–1178

    Article  CAS  PubMed  Google Scholar 

  14. Ilyas A, Hashim Z, Naeem N, Haneef K, Zarina S (2014) The effect of alendronate on proteome of hepatocellular carcinoma cell lines. Int J Proteomics 2014:53295

    Article  Google Scholar 

  15. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    Article  CAS  PubMed  Google Scholar 

  16. Suo A, Zhang M, Yao Y, Zhang L, Huang C, Nan K, Zhang W (2012) Proteome analysis of the effects of sorafenib on human hepatocellular carcinoma cell line HepG2. Med Oncol 29:1827–1836

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Rahman O, Fouad M (2014) Risk of mucocutaneous toxicities in patients with solid tumors treated with everolimus; a systematic review and meta-analysis. Expert Rev Anticancer Ther 27:1–8

    Google Scholar 

  18. Mirza S, Sharma G, Pandya P, Ralhan R (2010) Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem 342:101–109

    Article  CAS  PubMed  Google Scholar 

  19. Venturelli S, Berger A, Weiland T et al (2010) Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-Azacytidine and 5-Aza-20-deoxycytidine in solid tumor cells. Mol Cancer Ther 12:226–236

    Google Scholar 

  20. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55

    Article  CAS  Google Scholar 

  21. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  22. Bouchard J, Momparler RL (1983) Incorporation of 5-Aza-20-deoxycytidine-50-triphosphate into DNA. Interactions with mammalian DNA polymerase alpha and DNA methylase. Mol Pharmacol 24:109–114

    CAS  PubMed  Google Scholar 

  23. Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    Article  CAS  PubMed  Google Scholar 

  24. Jiang C, Zhou B, Fan K et al (2007) A sequential treatment of depsipeptide followed by 5-Azacytidine enhances Gadd45, expression in hepatocellular carcinoma cells. Anticancer Res 27:3783–3790

    CAS  PubMed  Google Scholar 

  25. Momparler RL, Rivard GE, Gyger M (1985) Clinical trial on 5-aza-20-deoxycytidine in patients with acute leukemia. Pharmacol Ther 30:277–286

    Article  CAS  PubMed  Google Scholar 

  26. Kantarjian HM, O’Brien SM, Estey E et al (1997) Decitabine studies in chronic and acute myelogenous leukemia. Leukemia 11:35–36

    Google Scholar 

  27. Koshy M, Dorn L, Bressler L et al (2000) 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96:2379–2384

    CAS  PubMed  Google Scholar 

  28. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Issa JP, Herman JG, Bassett DE Jr, Nelkin BD, Baylin SB (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90:8891–8895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Fan T, Han L, Cong R, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37:719–727

    Article  CAS  PubMed  Google Scholar 

  31. Suyama K, Noguchi Y, Tanaka T et al (2007) Isoprenoid-independent pathway is involved in apoptosis induced by risedronate, a bisphosphonate, in which bim plays a critical role in breast cancer cell line mcf-7. Oncol Rep 18:1291–1298

    CAS  PubMed  Google Scholar 

  32. Ai J, Tan Y, Ying W et al (2006) Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 6:538–546

    Article  CAS  PubMed  Google Scholar 

  33. Tang H, Tian E, Liu C, Wang Q, Deng H (2013) Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 8:e59610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14:211–215

    Article  Google Scholar 

  35. Gao S, Mobley A, Miller C, Boklan J, Chandra J (2008) Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res 32:771–780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chandra J (2009) Oxidative stress by targeted agents promotes cytotoxicity in hematologic malignancies. Antioxid Redox Signal 11:1123–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lee DJ, Kang DH, Choi M et al (2013) Peroxiredoxin-2 represses melanoma metastasis by increasing E-Cadherin/â-catenin complexes in adherens junctions. Cancer Res 73:1–14

    Article  Google Scholar 

  38. Singh SA, Isken F, Agelopoulos K et al (2012) Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119:2346–2357

    Article  PubMed  Google Scholar 

  39. Sato N, Iwata S, Nakamura K, Hori T, Mori K, Yodoi J (1995) Thiol-mediated redox regulation of apoptosis. J. Immunol 154:3194–3203

    CAS  PubMed  Google Scholar 

  40. Lin LL, Chen CN, Lin WC et al (2008) Annexin A4: a novel molecular marker for gastric cancer with Helicobacter pylori infection using proteomics approach. Proteomics Clin Appl 2:619–634

    Article  CAS  PubMed  Google Scholar 

  41. Chuthapisith S, Bean BE, Cowley G et al (2009) Annexins in human breast cancer: possible predictors of pathological response to neoadjuvant chemotherapy. Eur J Cancer 45:1274–1281

    Article  CAS  PubMed  Google Scholar 

  42. Ji NY, Park MY, Kang YH et al (2009) Evaluation of annexin II as a potential serum marker for hepatocellular carcinoma using a developed sandwich ELISA method. Int J Mol Med 24:765–771

    CAS  PubMed  Google Scholar 

  43. Inokuchi J, Narula N, Yee DS et al (2009) Annexin A2 positively contributes to the malignant phenotype and secretion of IL-6 in DU145 prostate cancer cells. Int J Cancer 124:68–74

    Article  CAS  PubMed  Google Scholar 

  44. Deng S, Wang J, Hou I et al (2013) Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically. Oncol lett 5:107–112

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Peng B, Guo C, Guan H, Liu S, Sun MZ (2014) Annexin A5 as a potential marker in tumors. Clin Chem Acta 427:42–48

    Article  CAS  Google Scholar 

  46. Ationu A, Humphries A, Bellingham A, Layton M (1997) Metabolic correction of triose phosphate isomerase deWciency in vitro by complementation. Biochem Biophys Res Commun 232:528–531

    Article  CAS  PubMed  Google Scholar 

  47. Kuramitsu Y, Nakamura K (2005) Current progress in proteomic study of hepatitis C virus-related human hepatocellular carcinoma. Expert Rev Proteomics 2:589–601

    Article  CAS  PubMed  Google Scholar 

  48. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Zhang B (2006) D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness. Cancer Res 66:5592–5598

    Article  CAS  PubMed  Google Scholar 

  50. Heckman-Stoddard BM, Vargo-Gogola T, McHenry PR et al (2009) Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression. Breast Cancer Res 11:R61

    Article  PubMed Central  PubMed  Google Scholar 

  51. Gen Y, Yasui K, Zen K et al (2009) A novel amplification target, ARHGAP5, promotes cell spreading and migration by negatively regulating RhoA in Huh-7 hepatocellular carcinoma cells. Cancer Lett 275:27–34

    Article  CAS  PubMed  Google Scholar 

  52. Lazarini M, Traina F, Machado-Neto JA et al (2013) ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells. Biochim Biophys Acta 1832:365–374

    Article  CAS  PubMed  Google Scholar 

  53. Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS Jr (2000) Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 19:1123–1131

    Article  CAS  PubMed  Google Scholar 

  54. Mayo MW, Baldwin AS (2000) The transcription factor NF-kB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470:55–62

    Google Scholar 

Download references

Acknowledgments

Higher Education Commission, Islamabad, Pakistan is acknowledged for providing financial assistance to Amber Ilyas through Indigenous Ph.D. scholar scheme. Authors acknowledge Dr. Charles Rice from The Rockefeller University, NY, for providing Huh-7 cells for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamshad Zarina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, A., Hashim, Z. & Zarina, S. Effects of 5′-azacytidine and alendronate on a hepatocellular carcinoma cell line: a proteomics perspective. Mol Cell Biochem 405, 53–61 (2015). https://doi.org/10.1007/s11010-015-2395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2395-1

Keywords

Navigation