Skip to main content
Log in

The action of p-synephrine on hepatic carbohydrate metabolism and respiration occurs via both Ca2+-mobilization and cAMP production

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Citrus aurantium extracts, which contain large amounts of p-synephrine, are widely used for weight loss purposes and as appetite suppressants. In the liver, C. aurantium (bitter orange) extracts affect hemodynamics, carbohydrate metabolism, and oxygen uptake. The purpose of the present work was to quantify the action of p-synephrine and also to obtain indications about its mechanism of action, a task that would be difficult to accomplish with C. aurantium extracts due to their rather complex composition. The experimental system was the isolated perfused rat liver. p-Synephrine significantly stimulated glycogenolysis, glycolysis, gluconeogenesis, and oxygen uptake. The compound also increased the portal perfusion pressure and the redox state of the cytosolic NAD+/NADH couple. A Ca2+-dependency for both the hemodynamic and the metabolic effects of p-synephrine was found. p-Synephrine stimulated both cAMP overflow and the initial Ca2+ release from the cellular stores previously labeled with 45Ca2+. The metabolic and hemodynamic actions of p-synephrine were strongly inhibited by α-adrenergic antagonists and moderately affected by β-adrenergic antagonists. The results allow to conclude that p-synephrine presents important metabolic and hemodynamic effects in the liver. These effects can be considered as both catabolic (glycogenolysis) and anabolic (gluconeogenesis), they are mediated by both α- and β-adrenergic signaling, require the simultaneous participation of both Ca2+ and cAMP, and could be contributing to the overall stimulation of metabolism that usually occurs during weight loss periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mercarder J, Wanecq E, Chen J, Carpéné C (2011) Isopropylnorsynephrine is a stronger lipolytic agent in human adipocytes than synephrine and other amines present in Citrus aurantium. J Physiol Biochem 67:443–452

    Article  Google Scholar 

  2. Fugh-Berman A, Myers A (2004) Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: current status of clinical and basic research. Exp Biol Med 29:689–704

    Google Scholar 

  3. Arbo MD, Larentis ER, Linck VM, Aboy AL, Pimentel AL, Henriques AT, Dallegrave E, Garcia SC, Leal MB, Limberger RP (2008) Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem Toxicol 46:2770–2775

    Article  CAS  PubMed  Google Scholar 

  4. Wheaton TA, Stewart I (1969) Biosynthesis of synephrine in citrus. Phytochemistry 8:85–92

    Article  CAS  Google Scholar 

  5. Tsujita T, Takaku T (2007) Lipolysis induced by segment wall extract from Satsuma mandarin orange (Citrus unshu Mark). J Nutr Sci Vitaminol 53:547–551

    Article  CAS  PubMed  Google Scholar 

  6. Song DK, Suh HW, Jung JS, Wie MB, Son KH, Kim YH (1996) Antidepressant-like effects of p-synephrine in mouse models of immobility tests. Neurosci Lett 214:107–110

    Article  CAS  PubMed  Google Scholar 

  7. Brown CM, McGrath JC, Midgley JM, Muir AGB, O′Brien JW, Thonoor CM, Williams CM, Wilson VG (1988) Activities of octopamine and synephrine stereoisomers on α-adrenoceptors. Br J Pharmacol 93:417–429

    Article  CAS  PubMed  Google Scholar 

  8. Carpéné C, Galitzky J, Fontana E, Atgié C, Lafontan M, Berlan M (1999) Selective activation of β3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. Naunyn Schmiedeberg’s Arch Pharmacol 359:310–321

    Article  Google Scholar 

  9. Hibino T, Yuzurihara M, Kase Y, Takeda A (2009) Synephrine, a component of Evodiae fructus, constricts isolated rat aorta via adrenergic and serotonergic receptors. J Pharmacol Sci 111:73–81

    Article  Google Scholar 

  10. Calapai G, Firenzuoli F, Saitta A, Squadrito F, Arlotta MR, Constantino G, Inferrera G (1999) Antiobesity and cardiovascular toxic effects of Citrus aurantium extracts in the rat: a preliminary report. Fitoterapia 70:586–592

    Article  CAS  Google Scholar 

  11. Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB (2012) p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun 418:720–724

    Article  CAS  PubMed  Google Scholar 

  12. Haller CA, Duan M, Jacob P III, Benowitz N (2008) Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions. Br J Clin Pharmacol 65:833–840

    Article  PubMed Central  PubMed  Google Scholar 

  13. Peixoto JS, Comar JF, Moreira CT, Soares AA, Oliveira AL, Bracht A, Peralta RM (2012) Effects of Citrus aurantium (bitter orange) fruit extracts and p-synephrine on metabolic fluxes in the rat liver. Molecules 17:5854–5869

    Article  CAS  PubMed  Google Scholar 

  14. Scholz R, Bücher T (1965) Hemoglobin-free perfusion of rat liver. In: Chance B, Estabrook RW, Williamson JR (eds) Control of energy metabolism. Academic Press, New York, pp 393–414

    Google Scholar 

  15. Bracht A, Ishii-Iwamoto EL, Kelmer-Bracht AM (2003) O estudo do me-tabolismo no fígado em perfusão. In: Bracht A, Ishii-Iwamoto EL (eds) Métodos de laboratório em bioquímica. Editora Manole, São Paulo, pp 275–289

    Google Scholar 

  16. Bergmeyer HU (1974) Methods of enzymatic analysis. Verlag Chemie, Weinheim

    Google Scholar 

  17. Comar JF, Suzuki-Kemmelmeier F, Bracht A (2003) The action of oxybutynin on haemodynamics and metabolism in the perfused rat liver. Basic Clin Pharmacol Toxicol 93:147–152

    CAS  Google Scholar 

  18. Bracht A, Kouyoumdjian M, Ishii-Iwamoto EL, Borges DR (2002) Indicator injections and pressure monitoring as complementary tools for investigating microcirculatory changes in the liver. Trends Comp Biochem Physiol 9:1–16

    CAS  Google Scholar 

  19. Yamamoto NS, Ishii-Iwamoto EL, Bracht A (1992) Activation of glyco-genolysis by methotrexate. Influence of calcium and inhibitors of hormone action. Biochem Pharmacol 44:781–787

    Article  Google Scholar 

  20. Polato-Schmeisch A, Oliveira DS, Ide LT, Suzuki-Kemmelmeier F, Bracht A (2005) Zonation of the metabolic action of vasopressin in the bivascularly perfused rat liver. Reg Peptides 129:233–243

    Article  Google Scholar 

  21. Bygrave FL, Benedetti A (1993) Calcium: its modulation in liver by cross-talk between the actions of glucagon and calcium-mobilizing agonists. Biochem J 296:1–14

    CAS  PubMed  Google Scholar 

  22. Haga N, Aikawa K, Shishido K, Yanagida T, Kushida N, Takahashi N, Yazaki J, Yamaguchi O (2011) Effect of long-term prazosin and yohimbine administration on c-Fos expression in spinal neurons: inhibitory effect of alpha-1 and alpha-2 adrenoceptors on afferents from the lower urinary tract. Urol Inter 87:230–237

    Article  CAS  Google Scholar 

  23. Landau AM, Doudet DJ, Jakobsen S (2012) Amphetamine challenge de-creases yohimbine binding to α-2 adrenoceptors in Landrace pig brain. Psychopharmacology 222:155–163

    Article  CAS  PubMed  Google Scholar 

  24. Machackova J, Sanganalmath SK, Elimban V, Dhalla NS (2011) β-Adrenergic blockade attenuates cardiac dysfunction and myofibrillar remodelling in congestive heart failure. J Cell Mol Med 15:545–554

    Article  CAS  PubMed  Google Scholar 

  25. Constantin J, Suzuki-Kemmelmeier F, Yamamoto NS, Bracht A (1997) Production, uptake and metabolic effects of cyclic AMP in the bivascularly perfused rat liver. Biochem Pharmacol 54:1115–1125

    Article  CAS  PubMed  Google Scholar 

  26. Gauthier C, Rozec B, Manoury B, Baalligand JL (2011) Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep 8:184–192

    Article  CAS  PubMed  Google Scholar 

  27. Menahan LA, Wieland O (1969) The role of endogenous lipid in gluconeogenesis and ketogenesis of perfused rat liver. Eur J Biochem 9:182–188

    Article  CAS  PubMed  Google Scholar 

  28. Soboll S, Scholz R (1986) Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Lett 205:109–112

    Article  CAS  PubMed  Google Scholar 

  29. Bazotte RB, Constantin J, Curi R, Kemmelmeier FS, Hell NS, Bracht A (1989) The sensitivity of glycogenolysis to glucagon, epinephrine and cyanide in livers from rats in different metabolic conditions. Res Commun Chem Pathol Pharmacol 64:193–203

    CAS  PubMed  Google Scholar 

  30. Nascimento EA, Yamamoto NS, Bracht A, Ishii-Iwamoto EL (1995) Naproxen inhibits hepatic glycogenolysis induced by Ca2+-dependent agents. Gen Pharmacol 26:211–218

    Article  CAS  PubMed  Google Scholar 

  31. Pellati F, Benvenuti S, Melegari M, Firenzuoli F (2002) Determination of adrenergic agonists from extracts and herbal products of Citrus aurantium L. var. amara by LC. J Pharm Biomed Anal 29:1113–1119

    Article  CAS  PubMed  Google Scholar 

  32. Reinhart PH, Taylor WM, Bygrave FL (1982) Studies on alpha-adrenergic-induced respiration and glycogenolysis in perfused rat liver. J Biol Chem 257:1906–1912

    CAS  PubMed  Google Scholar 

  33. Tonello C, Dioni L, Briscini L, Nisoli E, Carruba MO (1998) SR59230A blocks β3-adrenoceptor-linked modulation of uncoupling protein-1 and leptin in rat brown adipocytes. Eur J Pharmacol 352:125–129

    Article  CAS  PubMed  Google Scholar 

  34. Ursino MG, Vasina V, Raschi E, Crema F, De Ponti F (2009) The β3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res 59:221–234

    Article  CAS  PubMed  Google Scholar 

  35. Trebicka J, Hennenberg M, Prosting AS, Laleman W, Klein S, Granzow M, Nevens F, Zaagsma J, Heller J, Sauerbruch T (2009) Role of β3-adrenoceptors for intrahepatic resistance and portal hypertension in liver cirrhosis. Hepatology 50:1924–1935

    Article  CAS  PubMed  Google Scholar 

  36. Stohs SJ, Preuss HG, Shara M (2011) A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxid Med Cell Longev 2011:482973

    Article  PubMed Central  PubMed  Google Scholar 

  37. de Oliveira AL, de Paula MN, Comar JF, Vilela VR, Peralta RM, Bracht A (2013) Adrenergic metabolic and hemodynamic effects of octopamine in the liver. Int J Mol Sci 14(11):21858–21872

    Article  PubMed Central  PubMed  Google Scholar 

  38. Docherty JR (2008) Pharmacology of stimulants prohibited by the world anti-doping agency (WADA). Br J Pharmacol 154:606–622

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Andrea Luiza de Oliveira is a fellowship holder of the Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelar Bracht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, A.L., Comar, J.F., de Sá-Nakanishi, A.B. et al. The action of p-synephrine on hepatic carbohydrate metabolism and respiration occurs via both Ca2+-mobilization and cAMP production. Mol Cell Biochem 388, 135–147 (2014). https://doi.org/10.1007/s11010-013-1905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1905-2

Keywords

Navigation