Skip to main content
Log in

Effects of Trigonella foenum-graecum (L.) on retinal oxidative stress, and proinflammatory and angiogenic molecular biomarkers in streptozotocin-induced diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the protective effects of Trigonella foenum-graecum Linn. (fenugreek) in Streptozotocin-induced diabetic rat retina. Fenugreek (100 and 200 mg/kg body weights) treatment was carried out for 24 weeks and evaluated for inflammatory [tumor necrosis factor (TNF)-α and interleukin (IL)-1β] and angiogenic [vascular endothelial growth factor (VEGF) and protein kinase C (PKC)-β] molecular biomarkers. Retinal oxidative stress was evaluated by estimating antioxidant (Glutathione, Superoxide dismutase, and Catalase) parameters. Fluorescein angiography was performed to detect retinal vascular leakage. Electron microscopy was performed to determine basement membrane thickness. In the present study, significant rises in the expressions of retinal inflammatory (TNF-α and IL-1β) and angiogenic (VEGF and PKC-β) molecular biomarkers were observed in diabetic retinae compared with normal retinae. However, fenugreek-treated retinae showed marked inhibition in the expression of inflammatory and angiogenic molecular biomarkers. Moreover, results from the present study showed positive modulatory effects of fenugreek on retinal oxidative stress. Fluorescein angiograms and fundus photographs obtained from diabetic retinae showed retinal vascular leakage. On the other hand, fenugreek-treated retinae did not show vascular leakage. Further, thickened BM was recorded in diabetic retina compared with normal retinae. However, fenugreek-treated retinae showed relatively lesser thickening of capillary BM. In conclusion, it may be postulated that fenugreek has great potential in preventing diabetes-induced retinal degeneration in humans after regular consumption in the specified dosage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Hartnett ME, Stratton RD, Browne RW, Rosner BA, Lanham RJ, Armstrong D (2000) Serum markers of oxidative stress and severity of diabetic retinopathy. Diabetes Care 23:234–240

    Article  CAS  PubMed  Google Scholar 

  3. Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:43603

    PubMed Central  PubMed  Google Scholar 

  4. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327

    Article  CAS  PubMed  Google Scholar 

  5. Demircan N, Safran BG, Soylu M, Ozcan AA, Sizmaz S (2006) Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20:1366–1369

    Article  CAS  PubMed  Google Scholar 

  6. Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56:224–230

    Article  CAS  PubMed  Google Scholar 

  7. Kowluru RA, Odenbach S (2004) Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol 88:1343

    Article  CAS  PubMed  Google Scholar 

  8. Hammes HP, Lin J, Bretzel RG, Brownlee M, Breier G (1998) Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47:401–406

    Article  CAS  PubMed  Google Scholar 

  9. Aiello LP (2002) The potential role of PKC β in diabetic retinopathy and macular edema. Surv Ophthalmol 47(Suppl 2):S263–S269

    Article  PubMed  Google Scholar 

  10. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL (1997) Vascular endothelial growth factor–induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 46:1473–1480

    Article  CAS  PubMed  Google Scholar 

  11. Raghuram TC, Sharma RD, Sivakumar B, Sahay BK (1994) Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother Res 8:83–86

    Article  Google Scholar 

  12. Marzouk M, Soliman AM, Omar TY (2013) Hypoglycemic and antioxidative effects of fenugreek and termis seeds powder in streptozotocin-diabetic rats. Eur Rev Med Pharmacol Sci 17:559–565

    CAS  PubMed  Google Scholar 

  13. Ajabnoor MA, Tilmisany AK (1988) Effect of Trigonella foenum graceum on blood glucose levels in normal and alloxan-diabetic mice. J Ethnopharmacol 22:45–49

    Article  CAS  PubMed  Google Scholar 

  14. Ravikumar P, Anuradha CV (1999) Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother Res 13:197

    Article  CAS  PubMed  Google Scholar 

  15. Middha SK, Bhattacharjee B, Saini D, Baliga MS, Nagaveni MB, Usha T (2011) Protective role of Trigonella foenum graceum extract against oxidative stress in hyperglycemic rats. Eur. Rev. Med Pharmacol Sci 15:427–435

    CAS  PubMed  Google Scholar 

  16. Sindhu G, Ratheesh M, Shyni GL, Nambisan B, Helen A (2012) Anti-inflammatory and antioxidative effects of mucilage of Trigonella foenum graecum (Fenugreek) on adjuvant induced arthritic rats. Int Immunopharmacol 12:205–211

    Article  CAS  PubMed  Google Scholar 

  17. Chaturvedi U, Shrivastava A, Bhadauria S, Saxena JK, Bhatia G (2013) A Mechanism-based pharmacological evaluation of efficacy of Trigonella foenum graecum (Fenugreek) seeds in regulation of dyslipidemia and oxidative stress in hyperlipidemic rats. J Cardiovasc Pharmacol 61:505–512

    Article  CAS  PubMed  Google Scholar 

  18. Kumar P, Kale RK, McLean P, Baquer NZ (2012) Antidiabetic and neuroprotective effects of Trigonella foenum-graecum seed powder in diabetic rat brain. Prague Med Rep 113:33

    CAS  PubMed  Google Scholar 

  19. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R (2012) Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats. Vascul Pharmacol 57:201–207

    Article  CAS  PubMed  Google Scholar 

  20. Vucetic M, Jensen PK, Jansen EC (2004) Diameter variations of retinal blood vessels during and after treatment with hyperbaric oxygen. Br J Opthalmol 88:771

    Article  CAS  Google Scholar 

  21. Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab 16:4–8

    Google Scholar 

  22. Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R (2012) Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res 47:103–108

    Article  CAS  PubMed  Google Scholar 

  23. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Jha KA (2013) Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 87:65–74

    Article  CAS  PubMed  Google Scholar 

  24. Abu el Asrar AM, Maimone D, Morse PH, Gregory S, Reder AT (1992) Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am J Ophthalmol 114:731

    CAS  PubMed  Google Scholar 

  25. Yuuki T, Kanda T, Kimura Y, Kotajima N, Tamura J, Kobayashi I, Kishi S (2001) Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J Diabetes Complicat 15:257–259

    Article  CAS  PubMed  Google Scholar 

  26. Kowluru RA, Odenbach S (2004) Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45:4161–4166

    Article  PubMed  Google Scholar 

  27. Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32

    CAS  PubMed  Google Scholar 

  28. Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109:805–815

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gupta SK, Kumar B, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Aggarwal A (2013) Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 29:419–426

    Article  Google Scholar 

  30. Roy S, Maiello M, Lorenzi M (1994) Increased expression of basement membrane collagen in human diabetic retinopathy. J Clin Invest 93:438–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cherian S, Roy S, Pinheiro A, Roy S (2009) Tight glycemic control regulates fibronectin expression and basement membrane thickening in retinal and glomerular capillaries of diabetic rats. Invest Ophthalmol Vis Sci 50:943–949

    Article  PubMed  Google Scholar 

  32. Roy S, Nasser S, Yee M, Graves DT, Roy S (2011) A long-term siRNA strategy regulates fibronectin overexpression and improves vascular lesions in retinas of diabetic rats. Mol Vis 17:3166–3174

    CAS  PubMed  Google Scholar 

  33. Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S (2011) Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther 27:123–130

    Article  CAS  PubMed  Google Scholar 

  34. Gardiner TA, Anderson HR, Stitt AW (2003) Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328–333

    Article  CAS  PubMed  Google Scholar 

  35. Giebel SJ, Menicucci G, McGuire PG, Das A (2005) Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 85:597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Department of Science and Technology under DPRP is gratefully acknowledged. Facilities for electron microscopy availed at SAIF (DST), All India Institute of Medical Sciences, New Delhi are acknowledged. Herbal extract was obtained from Sanat Products Ltd., New Delhi, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.K., Kumar, B., Nag, T.C. et al. Effects of Trigonella foenum-graecum (L.) on retinal oxidative stress, and proinflammatory and angiogenic molecular biomarkers in streptozotocin-induced diabetic rats. Mol Cell Biochem 388, 1–9 (2014). https://doi.org/10.1007/s11010-013-1893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1893-2

Keywords

Navigation