Skip to main content

Advertisement

Log in

Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The forkhead box C2 (Foxc2) protein, a member of the forkhead/winged helix transcription factor family, is strongly expressed in developing embryo and is required in various developmental processes. However, the precise function of Foxc2 in osteoblast differentiation remains largely unknown. The present study investigated the role of Foxc2 overexpression on osteogenic and adipogenic differentiations. In our experiment, rabbit bone marrow mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors containing Foxc2 or green fluorescent protein (GFP), and the gene expression and biological activity of Foxc2 were examined in vitro. The results showed that the mRNA and protein expressions of Foxc2 were stable and high in cells transduced with Foxc2 compared with those transduced with GFP. The overexpression of Foxc2 increased the mRNA and protein levels of COLI, OCN, and OPN; enhanced the activity of ALP after osteogenic induction; and decreased the expression of PPARγ-2 and the total droplet number after adipogenic induction. In addition, Foxc2 enhanced the expression of β-catenin, an important modulator of osteoblastogenesis. XAV939, a small molecule inhibitor of the Wnt-β-catenin pathway, suppressed Foxc2-mediated regulation of BMSC differentiation. These findings demonstrate that the overexpression of Foxc2 gene in BMSCs may promote osteogenic differentiation and inhibit adipogenic differentiation, and this effect can be mediated via activating the canonical Wnt-β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    Article  CAS  PubMed  Google Scholar 

  2. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bone-graft substitutes: facts, fictions, and applications. Am J Bone Joint Surg 83(Suppl 2):98–103

    Google Scholar 

  3. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355:247–256

    Article  Google Scholar 

  4. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  CAS  PubMed  Google Scholar 

  5. Parhami F, Jackson SM, Tintut Y et al (1999) Athergenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 14:2067–2078

    Article  CAS  PubMed  Google Scholar 

  6. Di Iorgi N, Mo AO, Grimm K, Wren TA, Dorey F, Gilsanz V (2010) Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab 95:2977–2982

    Article  PubMed  Google Scholar 

  7. Wren TA, Chung SA, Dorey FJ, Bluml S, Adams GB, Gilsanz V (2011) Bone marrow fat is inversely related to cortical bone in young and old subjects. J Clin Endocrinol Metab 96:7826

    Google Scholar 

  8. Burkhardt R, Kettner G, Bohm W et al (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164

    Article  CAS  PubMed  Google Scholar 

  9. Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23

    Article  CAS  PubMed  Google Scholar 

  10. Winnier GE, Hargett L, Hogan BL (1997) The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 11:926–940

    Article  CAS  PubMed  Google Scholar 

  11. Nifuji A, Miura N, Kato N, Kellermann O, Noda M (2001) Bone morphogenetic protein regulation of forkhead/winged helix transcription factor Foxc2 (Mfh1) in a murine mesodermal cell line C1 and in skeletal precursor cells. J Bone Miner Res 16:1765–1771

    Article  CAS  PubMed  Google Scholar 

  12. Cederberg A, Gronning LM, Ahren B et al (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–573

    Article  CAS  PubMed  Google Scholar 

  13. Davis KE, Moldes M, Farmer SR (2004) The forkhead transcription factor Foxc2 inhibits white adipocyte differentiation. J Biol Chem 279:42453–42461

    Article  CAS  PubMed  Google Scholar 

  14. Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  CAS  PubMed  Google Scholar 

  15. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  16. Hader C, Marlier A, Cantley L (2010) Mesenchymal–epithelial transition in epithelial response to injury: the role of Foxc2. Oncogene 29:1031–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hayashi H, Sano H, Seo S, Kume T (2008) The Foxc2 transcription factor regulates angiogenesis via induction of integrin beta3 expression. J Biol Chem 283:23791–23800

    Article  CAS  PubMed  Google Scholar 

  18. Park SJ, Gadi J, Cho KW et al (2011) The forkhead transcription factor Foxc2 promotes osteoblastogenesis via up-regulation of integrin β1 expression. Bone 49:428–438

    Article  CAS  PubMed  Google Scholar 

  19. Kim SH, Cho K, Choi HS et al (2009) The forkhead transcription factor Foxc2 stimulates osteoblast differentiation. Biochem Biophys Res Commun 386:532–536

    Article  CAS  PubMed  Google Scholar 

  20. Seo S, Fujita H, Nakano A et al (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 29:4458–4470

    Google Scholar 

  21. Kume T, Jiang H, Topczewska JM, Hogan BL (2001) The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 15:2470–2482

    Article  CAS  PubMed  Google Scholar 

  22. Deckers MM, Karperien M, van Der BC, Yamashita Y, Papapoulos SE, Lowik CW (2000) Expression of vascular endothelial growth factor and their receptors during osteoblast differentiation. Endocrinology 141:1667–1674

    Article  CAS  PubMed  Google Scholar 

  23. Uchida S, Sakai A, Kudo H et al (2003) Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone 32:491–501

    Article  CAS  PubMed  Google Scholar 

  24. Kim JK, Kim H, Park S et al (2005) Adipocyte-specific overexpression of FOXC2 prevents diet-induced increases in intramuscular fatty acyl CoA and insulin resistance. Diabetes 54:1657–1663

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  CAS  PubMed  Google Scholar 

  26. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    CAS  PubMed  Google Scholar 

  27. Li X, Cui Q, Kao C, Wang GJ, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659

    Article  CAS  PubMed  Google Scholar 

  28. Heino TJ, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3:131–145

    Article  CAS  PubMed  Google Scholar 

  29. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239

    Article  CAS  PubMed  Google Scholar 

  30. Nishimura R, Hata K, Ikeda F, Ichida F, Shimoyama A, Matsubara T et al (2008) Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab 26:203–212

    Article  PubMed  Google Scholar 

  31. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    Article  CAS  PubMed  Google Scholar 

  32. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244

    Article  CAS  PubMed  Google Scholar 

  33. Ciciarello M, Zini R, Rossi L, et al. (2012) Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev Dec 21. [Epub ahead of print]

  34. He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  CAS  PubMed  Google Scholar 

  35. Baksh D, Tuan RS (2007) Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212:817–826

    Article  CAS  PubMed  Google Scholar 

  36. Behrens J, Vonkries JP, Kuhl M et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  37. Huang SA, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signaling. Nature 461:614–619

    Article  CAS  PubMed  Google Scholar 

  38. Qiao LJ, Lhi Kang Kyung, Sun Heo Jung (2011) Simvastatin promotes osteogenic differentiation of mouse embryonic stem cells via canonical Wnt/β-catenin signaling. Mol Cells 32:437–444

    Article  CAS  PubMed  Google Scholar 

  39. Moldes M, Zuo Y, Morrison RF et al (2003) Peroxisome proliferator activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J 376:607–613

    Article  CAS  PubMed  Google Scholar 

  40. Ross SE, Hemati N, Longo KA et al (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  CAS  PubMed  Google Scholar 

  41. Bennett CN, Ross SE, Longo KA et al (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277:30998–31004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant no. 81101363).

Conflict of interest

The authors have no conflicts of interests associated with this study to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunzheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, W., Fan, L., Duan, D. et al. Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem 386, 125–134 (2014). https://doi.org/10.1007/s11010-013-1851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1851-z

Keywords

Navigation