Skip to main content

Advertisement

Log in

Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The purpose of study was to comparatively characterize the oxidative phosphorylation (OXPHOS) and function of respiratory chain in mitochondria in human gastric corpus mucosa undergoing transition from normal to cancer states and in human gastric cancer cell lines, MKN28 and MKN45. The tissue samples taken by endobiopsy and the cells were permeabilized by saponin treatment to assess mitochondrial function in situ by high-resolution oxygraphy. Compared to the control group of endobiopsy samples, the maximal capacity of OXPHOS in the cancer group was almost twice lower. The respiratory chain complex I-dependent respiration, normalized to complex II-dependent respiration, was reduced that suggests deficiency of complex I, but the respiratory control by ADP in the presence of succinate was increased. Similar changes were observed also in mucosa adjacent to cancer tissue. The respiratory capacity of MKN45 cells was higher than that of MKN28 cells, but both types of cells exhibited a deficiency of complex I of the respiratory chain which appears to be an intrinsic property of the cancer cells. In conclusion, human gastric cancer is associated with decreased respiratory capacity, deficiency of the respiratory complex I of mitochondria, and improved coupling of succinate oxidation to phosphorylation in tumor tissue and adjacent atrophic mucosa. Detection of these changes in endobiopsy samples may be of diagnostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–6740

    PubMed  CAS  Google Scholar 

  2. Correa P (2004) The biological model of gastric carcinogenesis. IARC Scientific Publication, pp 301–310

  3. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  4. Weinhouse S (1956) On respiratory impairment in cancer cells. Science 124:267–269

    Article  PubMed  CAS  Google Scholar 

  5. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    Article  PubMed  CAS  Google Scholar 

  6. Moreno-Sánchez R, Rodríguez-Enríquez S, Saavedra E et al (2009) The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells? BioFactors 35:209–225. doi:10.1002/biof.31

    Article  PubMed  Google Scholar 

  7. Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R (2000) Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 375:21–30. doi:10.1006/abbi.1999.1582

    Article  PubMed  Google Scholar 

  8. Fogal V, Richardson AD, Karmali PP et al (2010) Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 30:1303–1318. doi:10.1128/MCB.01101-09

    Article  PubMed  CAS  Google Scholar 

  9. Gough DJ, Corlett A, Schlessinger K et al (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716. doi:10.1126/science.1171721

    Article  PubMed  CAS  Google Scholar 

  10. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418. doi:10.1111/j.1742-4658.2007.05686.x

    Article  PubMed  Google Scholar 

  11. Sonveaux P, Végran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942. doi:10.1172/JCI36843

    PubMed  CAS  Google Scholar 

  12. Tomitsuka E, Kita K, Esumi H (2010) The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci 1201:44–49. doi:10.1111/j.1749-6632.2010.05620.x

    Article  PubMed  CAS  Google Scholar 

  13. Morrish F, Isern N, Sadilek M et al (2009) c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28:2485–2491. doi:10.1038/onc.2009.112

    Article  PubMed  CAS  Google Scholar 

  14. Gruno M, Peet N, Tein A et al (2008) Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol 43:780–788. doi:10.1007/s00535-008-2231-4

    Article  PubMed  CAS  Google Scholar 

  15. Gruno M, Peet N, Seppet E et al (2006) Oxidative phosphorylation and its coupling to mitochondrial creatine and adenylate kinases in human gastric mucosa. Am J Physiol Regul Integr Comp Physiol 291:R936–R946. doi:10.1152/ajpregu.00162.2006

    Article  PubMed  CAS  Google Scholar 

  16. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney System. International workshop on the histopathology of gastritis, Houston 1994. Am J Surg Pathol 20:1161–1181

    Article  PubMed  CAS  Google Scholar 

  17. Peetsalu A, Maaroos HI, Sipponen P, Peetsalu M (1991) Long-term effect of vagotomy on gastric mucosa and Helicobacter pylori in duodenal ulcer patients. Scand J Gastroenterol Suppl 186:77–83

    Article  PubMed  CAS  Google Scholar 

  18. World Medical Association (1997) Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. Cardiovasc Res 35:2–3

    Article  Google Scholar 

  19. Motoyama T, Hojo H, Watanabe H (1986) Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn 36:65–83

    PubMed  CAS  Google Scholar 

  20. Eimre M, Paju K, Pelloux S et al (2008) Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777:514–524. doi:10.1016/j.bbabio.2008.03.019

    Article  PubMed  CAS  Google Scholar 

  21. Lim HY, Ho QS, Low J et al (2011) Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion 11:437–443. doi:10.1016/j.mito.2010.12.015

    Article  PubMed  CAS  Google Scholar 

  22. Hawkins BJ, Levin MD, Doonan PJ et al (2010) Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 285:26494–26505. doi:10.1074/jbc.M110.143164

    Article  PubMed  CAS  Google Scholar 

  23. Gellerich FN, Deschauer M, Chen Y et al (2002) Mitochondrial respiratory rates and activities of respiratory chain complexes correlate linearly with heteroplasmy of deleted mtDNA without threshold and independently of deletion size. Biochim Biophys Acta 1556:41–52

    Article  PubMed  CAS  Google Scholar 

  24. Rustin P, Chretien D, Bourgeron T et al (1991) Assessment of the mitochondrial respiratory chain. Lancet 338:60

    Article  PubMed  CAS  Google Scholar 

  25. Vahsen N, Candé C, Brière J-J et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689. doi:10.1038/sj.emboj.7600461

    Article  PubMed  CAS  Google Scholar 

  26. Yin G-Y, Zhang W-N, Shen X-J et al (2003) Ultrastructure and molecular biological changes of chronic gastritis, gastric cancer and gastric precancerous lesions: a comparative study. World J Gastroenterol 9:851–857

    PubMed  Google Scholar 

  27. Matoba S, Kang J-G, Patino WD et al (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653. doi:10.1126/science.1126863

    Article  PubMed  CAS  Google Scholar 

  28. Levine AJ, Feng Z, Mak TW et al (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275. doi:10.1101/gad.1363206

    Article  PubMed  CAS  Google Scholar 

  29. Kondoh H, Lleonart ME, Gil J et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    PubMed  CAS  Google Scholar 

  30. Matsuhashi N, Saio M, Matsuo A et al (2004) Expression of p53 protein as a predictor of the response to 5-fluorouracil and cisplatin chemotherapy in human gastrointestinal cancer cell lines evaluated with apoptosis by use of thin layer collagen gel. Int J Oncol 24:807–813

    PubMed  CAS  Google Scholar 

  31. Wang F, Liu J, Robbins D et al (2011) Mutant p53 exhibits trivial effects on mitochondrial functions which can be reactivated by ellipticine in lymphoma cells. Apoptosis 16:301–310. doi:10.1007/s10495-010-0559-8

    Article  PubMed  CAS  Google Scholar 

  32. Atsumi T, Kato K, Uno K et al (2007) Pathophysiological role of the activation of p38 mitogen-activated protein kinases in poorly differentiated gastric cancer. Pathol Int 57:635–644. doi:10.1111/j.1440-1827.2007.02152.x

    Article  PubMed  CAS  Google Scholar 

  33. Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev 18:278–289. doi:10.1101/gad.1152204

    Article  PubMed  CAS  Google Scholar 

  34. Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681

    PubMed  CAS  Google Scholar 

  35. Cuezva JM, Ortega AD, Willers I et al (2009) The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta 1792:1145–1158. doi:10.1016/j.bbadis.2009.01.006

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409. doi:10.1016/j.molonc.2011.07.008

    Article  PubMed  CAS  Google Scholar 

  37. Simonnet H, Demont J, Pfeiffer K et al (2003) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24:1461–1466. doi:10.1093/carcin/bgg109

    Article  PubMed  CAS  Google Scholar 

  38. Bonora E, Porcelli AM, Gasparre G et al (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66:6087–6096. doi:10.1158/0008-5472.CAN-06-0171

    Article  PubMed  CAS  Google Scholar 

  39. Boitier E, Merad-Boudia M, Guguen-Guillouzo C et al (1995) Impairment of the mitochondrial respiratory chain activity in diethylnitrosamine-induced rat hepatomas: possible involvement of oxygen free radicals. Cancer Res 55:3028–3035

    PubMed  CAS  Google Scholar 

  40. Griffiths EA, Pritchard SA, Valentine HR et al (2007) Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. Br J Cancer 96:95–103. doi:10.1038/sj.bjc.6603524

    Article  PubMed  CAS  Google Scholar 

  41. Griffiths EA, Pritchard SA, McGrath SM et al (2008) Hypoxia-associated markers in gastric carcinogenesis and HIF-2alpha in gastric and gastro-oesophageal cancer prognosis. Br J Cancer 98:965–973. doi:10.1038/sj.bjc.6604210

    Article  PubMed  CAS  Google Scholar 

  42. Ralph SJ, Rodríguez-Enríquez S, Neuzil J et al (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation—why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–170. doi:10.1016/j.mam.2010.02.008

    Article  PubMed  CAS  Google Scholar 

  43. Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 274:16188–16197

    Article  PubMed  CAS  Google Scholar 

  44. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662. doi:10.1038/sj.onc.1209607

    Article  PubMed  CAS  Google Scholar 

  45. Lemarie A, Grimm S (2011) Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer? Oncogene 30:3985–4003. doi:10.1038/onc.2011.167

    Article  PubMed  CAS  Google Scholar 

  46. Baracca A, Chiaradonna F, Sgarbi G et al (2010) Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 1797:314–323. doi:10.1016/j.bbabio.2009.11.006

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto F, Perucho M (1984) Activation of a human c-K-ras oncogene. Nucleic Acids Res 12:8873–8885

    Article  PubMed  CAS  Google Scholar 

  48. Hu Y, Lu W, Chen G et al (2012) K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399–412. doi:10.1038/cr.2011.145

    Article  PubMed  CAS  Google Scholar 

  49. Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793. doi:10.1073/pnas.1003428107

    Article  PubMed  CAS  Google Scholar 

  50. Chiaradonna F, Sacco E, Manzoni R et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25:5391–5404. doi:10.1038/sj.onc.1209528

    Article  PubMed  CAS  Google Scholar 

  51. Mitsushita J, Lambeth JD, Kamata T (2004) The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 64:3580–3585. doi:10.1158/0008-5472.CAN-03-3909

    Article  PubMed  CAS  Google Scholar 

  52. Komatsu D, Kato M, Nakayama J et al (2008) NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene 27:4724–4732. doi:10.1038/onc.2008.102

    Article  PubMed  CAS  Google Scholar 

  53. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171. doi:10.1152/ajpcell.00207.2006

    Article  PubMed  CAS  Google Scholar 

  54. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R (2010) Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 31:29–59. doi:10.1016/j.mam.2009.12.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant no. 7117 of the Estonian Science Foundation and Grant 0182549s03 of the Estonian Ministry of Education and Research. The authors thank Mrs Ellen Gvozdkova for technical assistance. A.H. is K. Albin Johansson Research Professor of the Foundation for the Finnish Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marju Puurand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puurand, M., Peet, N., Piirsoo, A. et al. Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena. Mol Cell Biochem 370, 69–78 (2012). https://doi.org/10.1007/s11010-012-1399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1399-3

Keywords

Navigation