Skip to main content

Advertisement

Log in

MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MiRNAs are a new class of small RNA molecules that regulate gene expression at the post-transcriptional and translational levels. MiRNAs have been implicated in the control of many vital biological processes including development, cell proliferation, differentiation, and apoptosis. A growing number of studies have shown that miRNAs also play an important role in carcinogenesis and other diseases. Among the miRNAs identified, miRNA-21 is dramatically up-regulated in cancer cells of various origins. It regulates a wide range of genes and pathways involved in cancer initiation, transformation, invasion, and metastasis. MiRNA-21 also acts as a pro-survival factor in cardiovascular diseases. Aberrant expression in these diseases makes miRNA-21 a potential marker for disease diagnosis and prognosis. This review highlights the complex roles that miRNA-21 plays in cancer and cardiovascular diseases and its potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    PubMed  CAS  Google Scholar 

  2. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    PubMed  CAS  Google Scholar 

  3. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    PubMed  CAS  Google Scholar 

  4. Baffa R, Fassan M, Volinia S et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219:214–221

    PubMed  CAS  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    PubMed  CAS  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs–microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    PubMed  CAS  Google Scholar 

  7. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    PubMed  CAS  Google Scholar 

  8. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    PubMed  CAS  Google Scholar 

  9. Asangani IA, Rasheed SA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    PubMed  CAS  Google Scholar 

  10. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    PubMed  CAS  Google Scholar 

  11. Calin GA, Sevignani C et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    PubMed  CAS  Google Scholar 

  12. Fujita S, Ito T, Mizutani T et al (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504

    PubMed  CAS  Google Scholar 

  13. Talotta F, Cimmino A et al (2009) An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28:73–84

    PubMed  CAS  Google Scholar 

  14. Löffler D, Brocke-Heidrich K et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1133–1330

    Google Scholar 

  15. Huang TH, Wu F et al (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284:18515–185124

    PubMed  CAS  Google Scholar 

  16. Seike M, Goto A et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 106:12085–12090

    PubMed  CAS  Google Scholar 

  17. Wickramasinghe NS, Manavalan TT et al (2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37:2584–2595

    PubMed  CAS  Google Scholar 

  18. Yamagata K, Fujiyama S et al (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 36:340–347

    PubMed  CAS  Google Scholar 

  19. Ribas J, Ni X et al (2009) miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 69:7165–7169

    PubMed  CAS  Google Scholar 

  20. Choy MK, Movassagh M et al (2010) High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-kappaB-complex-dependent gene expression in human heart failure. Genome Med 2:37

    PubMed  Google Scholar 

  21. Zhu Y, Yu X, Fu H et al (2010) MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis. Int J Clin Exp Med 3:211–222

    PubMed  CAS  Google Scholar 

  22. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    PubMed  CAS  Google Scholar 

  23. Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284:26533–26546

    PubMed  CAS  Google Scholar 

  24. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14:2690–2695

    PubMed  CAS  Google Scholar 

  25. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    PubMed  CAS  Google Scholar 

  26. Ferracin M, Zagatti B et al (2010) MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer 9:123

    PubMed  Google Scholar 

  27. Wang T, Zhang X, Obijuru L et al (2007) A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosom Cancer 46:336–347

    PubMed  CAS  Google Scholar 

  28. Jazdzewski K, Boguslawska J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96:E546–E553

    PubMed  CAS  Google Scholar 

  29. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    PubMed  CAS  Google Scholar 

  30. Yan LX, Huang XF, Shao Q et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360

    PubMed  CAS  Google Scholar 

  31. Fulci V, Chiaretti S et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109:4944–4951

    PubMed  CAS  Google Scholar 

  32. Hatley ME, Patrick DM et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18:282–293

    PubMed  CAS  Google Scholar 

  33. Thum T, Gross C, Fiedler J, Fischer T et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    PubMed  CAS  Google Scholar 

  34. Tatsuguchi M, Seok HY (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141

    PubMed  CAS  Google Scholar 

  35. Lin Y, Liu X et al (2009) Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284:7903–7913

    PubMed  CAS  Google Scholar 

  36. Roy S, Khanna S (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82:21–29

    PubMed  CAS  Google Scholar 

  37. Cheng Y, Ji R, Yue J et al (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840

    PubMed  CAS  Google Scholar 

  38. Hsieh CH, Jeng JC (2010) MicroRNA profiling in ischemic injury of the gracilis muscle in rats. BMC Musculoskelet Disord 11:123

    PubMed  Google Scholar 

  39. Pezzolesi MG, Platzer P, Waite KA, Eng C (2008) Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome. Am J Hum Genet 82:1141–1149

    PubMed  CAS  Google Scholar 

  40. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    PubMed  CAS  Google Scholar 

  41. Hu SJ, Ren G, Liu JL, Zhao ZA et al (2008) MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem 283:23473–23484

    PubMed  CAS  Google Scholar 

  42. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414

    PubMed  CAS  Google Scholar 

  43. Velu CS, Baktula AM, Grimes HL (2009) Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113:4720–4728

    PubMed  CAS  Google Scholar 

  44. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27:3093–3102

    PubMed  CAS  Google Scholar 

  45. Kagalwala MN, Singh SK, Majumder S (2008) Stemness is only a state of the cell. Cold Spring Harb Symp Quant Biol 73:227–234

    PubMed  CAS  Google Scholar 

  46. Singh SK, Kagalwala MN, Parker-Thornburg J, Adams H, Majumder S (2008) REST maintains self-renewal and pluripotency of embryonic stem cells. Nature 453:223–227

    PubMed  CAS  Google Scholar 

  47. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172

    PubMed  CAS  Google Scholar 

  48. Moumen A, Masterson P, O’Connor MJ, Jackson SP (2005) hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123:1065–1078

    PubMed  CAS  Google Scholar 

  49. Gressner O, Schilling T, Lorenz K et al (2005) TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24:2458–2471

    PubMed  CAS  Google Scholar 

  50. Siegel PM, Massagué J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    PubMed  CAS  Google Scholar 

  51. Liu G, Friggeri A et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597

    PubMed  CAS  Google Scholar 

  52. Marquez RT, Bandyopadhyay S et al (2010) Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest 90:1727–1736

    PubMed  CAS  Google Scholar 

  53. Sheikh MS, Fornace AJ Jr (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–15013

    PubMed  CAS  Google Scholar 

  54. Wang K, Li PF (2010) Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 285:16958–16966

    PubMed  CAS  Google Scholar 

  55. Yamanaka Y, Tagawa H et al (2009) Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood 114:3265–3275

    PubMed  CAS  Google Scholar 

  56. Hiyoshi Y, Kamohara H et al (2009) MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res 15:1915–1922

    PubMed  CAS  Google Scholar 

  57. Yang HS, Jansen AP et al (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23:26–37

    PubMed  Google Scholar 

  58. Bitomsky N, Böhm M, Klempnauer KH (2004) Transformation suppressor protein Pdcd4 interferes with JNK-mediated phosphorylation of c-Jun and recruitment of the coactivator p300 by c-Jun. Oncogene 23:7484–7493

    PubMed  CAS  Google Scholar 

  59. Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    PubMed  CAS  Google Scholar 

  60. Wickramasinghe NS et al (2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37:2584–2595

    PubMed  CAS  Google Scholar 

  61. Meng F, Henson R et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    PubMed  CAS  Google Scholar 

  62. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88:1358–1366

    PubMed  CAS  Google Scholar 

  63. Ziyan W, Shuhua Y et al. (2010) MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol. doi:10.1007/s12032-010-9563-7

  64. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    PubMed  CAS  Google Scholar 

  65. Mahadev K, Raval G et al (2002) Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 279:40–51

    PubMed  CAS  Google Scholar 

  66. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    PubMed  CAS  Google Scholar 

  67. Fujita S, Ito T et al (2008) MiR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504

    PubMed  CAS  Google Scholar 

  68. Yang Y, Chaerkady R, Beer MA, Mendell JT, Pandey A (2009) Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 9:1374–1384

    PubMed  CAS  Google Scholar 

  69. Liu M, Wu H, Liu T, Li Y, Wang F, Wan H, Li X, Tang H (2009) Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res 19:828–837

    PubMed  CAS  Google Scholar 

  70. Li T, Li D, Sha J et al (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    PubMed  CAS  Google Scholar 

  71. Cottonham CL, Kaneko S, Xu L (2010) MiR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285:35293–35302

    PubMed  CAS  Google Scholar 

  72. Li Y, Li W, Yang Y et al (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18

    PubMed  CAS  Google Scholar 

  73. Connolly EC, Van Doorslaer K et al (2010) Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res 8:691–700

    PubMed  CAS  Google Scholar 

  74. Qin W, Zhao B, Shi Y, Yao C, Jin L, Jin Y (2009) BMPRII is a direct target of miR-21. Acta Biochim Biophys Sin 41:618–623

    PubMed  CAS  Google Scholar 

  75. Wang P, Zou F et al (2009) MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 69:8157–8165

    PubMed  CAS  Google Scholar 

  76. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    PubMed  CAS  Google Scholar 

  77. Sayed D, Rane S et al (2008) MicroRNA-21 targets sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272–3282

    PubMed  CAS  Google Scholar 

  78. Cheng Y, Zhu P, Yang J et al (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439

    PubMed  CAS  Google Scholar 

  79. Cheng Y, Liu X et al (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:14–15

    CAS  Google Scholar 

  80. Sayed D, He M et al (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290

    PubMed  CAS  Google Scholar 

  81. Buller B, Liu X, Wang X et al (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    PubMed  CAS  Google Scholar 

  82. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    PubMed  CAS  Google Scholar 

  83. Sarkar J, Gou D et al (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871

    PubMed  CAS  Google Scholar 

  84. Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    PubMed  CAS  Google Scholar 

  85. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002

    PubMed  CAS  Google Scholar 

  86. Sheedy FJ, Palsson-McDermott E et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147

    PubMed  CAS  Google Scholar 

  87. Vinciguerra M, Sgroi A et al (2009) Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49:1176–1184

    PubMed  CAS  Google Scholar 

  88. Marquez RT, Wendlandt E et al (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298:G535–G541

    PubMed  CAS  Google Scholar 

  89. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    PubMed  CAS  Google Scholar 

  90. du Rieu MC, Torrisani J et al (2010) MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem 56:603–612

    PubMed  CAS  Google Scholar 

  91. Schetter AJ, Leung SY et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    PubMed  CAS  Google Scholar 

  92. Schetter AJ, Nguyen GH et al (2009) Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res 15:5878–5887

    PubMed  CAS  Google Scholar 

  93. Gao W, Shen H et al (2010) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137:557–566

    PubMed  Google Scholar 

  94. Rossi S, Shimizu M, Barbarotto E et al (2010) MicroRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 116:945–952

    PubMed  CAS  Google Scholar 

  95. Mitchell PS, Parkin RK et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    PubMed  CAS  Google Scholar 

  96. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108

    PubMed  CAS  Google Scholar 

  97. Zhang HL, Yang LF et al (2010) Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71:326–331

    PubMed  Google Scholar 

  98. Xie Y, Todd NW et al (2010) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67:170–176

    PubMed  Google Scholar 

  99. Link A, Balaguer F et al (2010) Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 19:1766–1774

    PubMed  CAS  Google Scholar 

  100. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    PubMed  Google Scholar 

  101. Elmén J, Lindow M et al (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36:1153–1162

    PubMed  Google Scholar 

  102. Negrini M, Ferracin M, Sabbioni S, Croce CM (2007) MicroRNAs in human cancer: from research to therapy. J Cell Sci 120:1833–1840

    PubMed  CAS  Google Scholar 

  103. Mudduluru G, George-William JN et al (2010) Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 31:185–197

    Google Scholar 

  104. Ali S, Ahmad A et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    PubMed  CAS  Google Scholar 

  105. Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264

    PubMed  CAS  Google Scholar 

  106. Shi GH, Ye DW et al (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31:867–873

    PubMed  CAS  Google Scholar 

  107. Li Y, Zhu X et al (2010) Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology 15:215–221

    PubMed  CAS  Google Scholar 

  108. Schramedei K, Mörbt N et al (2011) MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30:2975–2985

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. James Psathas of the Children’s Hospital of Philadelphia for his assistance in this work and the anonymous reviewers for their valuable comments. Funding was provided by the Program for New Century Excellent Talents in University (NCET-10-0607), the Fundamental Research Funds for the Central Universities (SWJTU11CX116) and J1103518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangdong Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Liang, Z., Xu, L. et al. MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases. Mol Cell Biochem 360, 147–158 (2012). https://doi.org/10.1007/s11010-011-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1052-6

Keywords

Navigation