Skip to main content
Log in

The association of receptor of advanced glycated end products and inflammatory mediators contributes to endothelial dysfunction in a prospective study of acute kidney injury patients with sepsis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The pathogenesis of acute kidney injury (AKI) occurring due to sepsis is incompletely understood. Endothelial activation, defined as up-regulation of adhesion molecules by proinflammatory cytokines, may be central to the development of sepsis-induced AKI. Our aim was to determine levels of circulating adhesion molecules endothelial (E)-selectin, intercellular adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM), inflammatory mediators; tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), vasoactive mediators; endothelin-1 (ET-1) and nitric oxide (NO), soluble receptor for advanced glycated end products (sRAGE) and serum fetuin-A in septic AKI patients before and after antibiotic therapy. Nineteen AKI patients with sepsis and fifteen healthy controls were enrolled in this prospective study. Results revealed that 12 weeks of therapy caused amelioration of endothelial and inflammatory injuries as well as renal function markers. Moreover, the positive correlations between levels of RAGE and E-selectin (r = 0.88), ET-1 (r = 0.90), and TNF-α (r = 0.94) and negative with NO (r = −0.75–0.95) suggest that possible interaction of RAGE and inflammation may contribute to endothelial dysfunction in septic AKI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

ARF:

Acute renal failure

GFR:

Glomerular filtration rate

ICU:

Intensive care unit

ICAM-1:

Intercellular adhesion molecule

VCAM-1:

Vascular cell adhesion molecule

TNF-α:

Tumor necrosis factor-α

LPS:

Lipopolysaccharide

WBC:

White blood count

TGF-β:

Transforming growth factor-β

ET-1:

Endothelin-1

NO:

Nitric oxide

RAGE:

Receptor for advanced glycated end products

s:

Soluble

IL:

Interleukin

IRI:

Ischemia–reperfusion injury

iNOS:

Inducible NO synthase

eNOS:

Endothelial NO synthase

PGI2 :

Prostacyclin

CRP:

C-reactive protein

HMGB1:

High-mobility group box 1

References

  1. Webb S, Dobb G (2007) ARF, ATN or AKI? It’s now acute kidney injury. Anaesth Intensive Care 35(6):843–844

    PubMed  CAS  Google Scholar 

  2. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al (2005) Acute renal failure in critically ill patients: a multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  3. Lameire N, Van Biesen W, Vanholder R (2006) The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol 2(7):364–377

    Article  PubMed  Google Scholar 

  4. Waikar SS, Liu KD, Chertow GM (2007) The incidence and prognostic significance of acute kidney injury. Curr Opin Nephrol Hypertens 16(3):227–236

    Article  PubMed  Google Scholar 

  5. Russell JA, Singer J, Bernard GR, Wheeler A, Fulkerson W, Hudson L et al (2000) Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med 28:3405–3411

    Article  PubMed  CAS  Google Scholar 

  6. Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M et al (2005) Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care 9:R700–R709

    Article  PubMed  Google Scholar 

  7. Wan J, Bagshaw S, Langenberg B, Saotome T, May C, Bellomo R (2008) Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med 36(4):S198–S203

    Article  PubMed  Google Scholar 

  8. Dellinger R, Levy M, Carlet J, Bion J, Parker M, Jaeschke R et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  9. Himmelfarb J, Joannidis M, Molitoris B, Schietz M, Okusa MD, Warnock D et al (2008) Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol 3(4):962–967

    Article  PubMed  Google Scholar 

  10. Matejovic M (2010) Sepsis induced AKI: mechanisms and targets for intervention. Paper presented at 15th international conference on continuous renal replacement therapies, San Diego

  11. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–887

    Article  PubMed  CAS  Google Scholar 

  12. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    PubMed  CAS  Google Scholar 

  13. Michael J, Whalen MD, Lesley A, Doughty MD, Timothy M, Carlos MD et al (2000) Intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 are increased in the plasma of children with sepsis-induced multiple organ failure. Crit Care Med 28:2600–2607

    Google Scholar 

  14. Jaeschke H, Smith CW (1997) Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 61:647–653

    PubMed  CAS  Google Scholar 

  15. De Vriese AS (2003) Prevention and treatment of acute renal failure in sepsis. Am Soc Nephrol 14(3):792–805

    Article  Google Scholar 

  16. Khan RZ, Badr KF (1999) Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock. Nephrol Dial Transplant 14:814–818

    Article  PubMed  CAS  Google Scholar 

  17. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  18. Farrell AJ, Blake DR (1996) Nitric oxide. Ann Rheum Dis 55:7–20

    Article  PubMed  CAS  Google Scholar 

  19. Er H, Evereklioglu C, Cumurcu T, Türköz Y, Ozerol E, Sahin K, Doganay S (2002) Serum homocysteine level is increased and correlated with endothelin-1 and nitric oxide in Behçet’s disease. Br J Ophthalmol 86(6):653–657

    Article  PubMed  CAS  Google Scholar 

  20. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J et al (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366

    PubMed  Google Scholar 

  21. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL et al (2005) Multifunctional roles for serum protein fetuin-A in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16:2920–2930

    Article  PubMed  CAS  Google Scholar 

  22. Keteller M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Ret Böhm et al (2003) Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361:827–833

    Article  Google Scholar 

  23. Ombrellino M, Wang H, Yang H, Zhang M, Vishnubhakat J, Frazier A et al (2001) Fetuin, a negative acute phase protein, attenuates TNF synthesis and the innate inflammatory response to carrageenan. Shock 15:181–185

    Article  PubMed  CAS  Google Scholar 

  24. Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70(10):1847–1857

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    PubMed  CAS  Google Scholar 

  26. Gil A, Bengmark S (2007) Advanced glycation and lipoxidation end products–amplifiers of inflammation: the role of food. Nutr Hosp 22(6):625–640

    PubMed  CAS  Google Scholar 

  27. Bohlender JM, Franke S, Stein G, Wolf G (2005) Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289(4):F645–F659

    Article  PubMed  CAS  Google Scholar 

  28. Haag-Weber M, Horl WH (1996) Are granulocyte inhibitory proteins contributing to enhanced susceptibility to infections in uremia? Nephrol Dial Transplant 11(Suppl 2):S98–S100

    Google Scholar 

  29. Sengoelge G, Födinger M, Skoupy S, Ferrara I, Zangerle C, Rogy M et al (1998) Endothelial cell adhesion molecule and PMNL response to inflammatory stimuli and AGE-modified fibronectin. Kidney Int 54(5):1637–1651

    Article  PubMed  CAS  Google Scholar 

  30. He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, Yamaya M (2007) The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 293(6):L1427–L1436

    Article  PubMed  CAS  Google Scholar 

  31. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, The ADQI Workgroup (2004) Acute renal failure–definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  32. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care (Lond, England) 11(2):31

    Article  Google Scholar 

  33. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis. 39(2 Suppl 1):S76–S92

    Google Scholar 

  34. Levy M, Fink M, Marshall J, Abraham E, Angus D, Cook D (2001) The 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  Google Scholar 

  35. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, ACCP/SCCM Consensus Conference Committee, et al. (2009) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. 1992. Chest. 136(5 Suppl): e28

  36. Jha V, Malhotra HS, Sakhuja V, Chugh KS (1992) Spectrum of hospital acquired acute renal failure in the developing countries—Chandigarh study. QJ Med 84:497–505

    Google Scholar 

  37. Shusterman N, Strom DL, Murray TG, Morrison G, West SL, Maislin G (1987) Risk factors and outcome of hospital-acquired acute renal failure. Clinical epidemiologic study. Am J Med 83:65–71

    Article  PubMed  CAS  Google Scholar 

  38. Wu X, Guo R, Wang Y, Cunningham PN (2007) The role of ICAM-1 in endotoxin-induced acute renal failure. Am J Physiol Renal Physiol 293(4):F1262–F1271

    Article  PubMed  CAS  Google Scholar 

  39. Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549

    Article  PubMed  CAS  Google Scholar 

  40. Pigott R, Dillon LP, Hemingway IH, Gearing AJ et al (1992) Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 187:584–589

    Article  PubMed  CAS  Google Scholar 

  41. Ficek R, Kokot F, Chudek J, Adamczak M, Ficek J, Wiecek A et al (2006) Plasma concentrations of tumor necrosis factor alpha may predict the outcome of patients with acute renal failure. Kidney Blood Press Res 29:203–209

    Article  PubMed  CAS  Google Scholar 

  42. Sonkar GK, Usha Singh RG (2009) Evaluation of serum tumor necrosis factor alpha and its correlation with histology in chronic kidney disease, stable renal transplant and rejection cases. Saudi J Kidney Dis Transpl 20:1000–1004

    PubMed  Google Scholar 

  43. Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97(4):1056–1063

    Article  PubMed  CAS  Google Scholar 

  44. Phull H, Lien Y-HH, Salkini MW, Escobar C, Lai L-W, Ramakumar S et al (2008) Delivery of intercellular adhesion molecule-1 antisense oligonucleotides using a topical hydrogel tissue sealant in a murine partial nephrectomy/ischemia model. Urology 72(3):690–695

    Article  PubMed  Google Scholar 

  45. Nemoto T, Burne MJ, Daniels F, O’Donnell MP, Crosson J, Berens K et al (2001) Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int 60(6):2205–2214

    Article  PubMed  CAS  Google Scholar 

  46. Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W, Miwa Y et al (2009) The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol 20(7):1565–1576

    Article  PubMed  CAS  Google Scholar 

  47. Burne MJ, Elghandour A, Haq M, Saba SR, Norman J, Condon T et al (2001) IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury. J Leukoc Biol 70(2):192–198

    PubMed  CAS  Google Scholar 

  48. Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54:1425–1430

    PubMed  CAS  Google Scholar 

  49. Khachigian LM, Collins T, Fries JW (1997) N-Acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo. Am J Pathol 151:1225–1229

    PubMed  CAS  Google Scholar 

  50. Guan Q, Nguan CY, Du C (2010) Expression of transforming growth factor-beta1 limits renal ischemia–reperfusion injury. Transplantation 89(11):1320–1327

    Article  PubMed  CAS  Google Scholar 

  51. Alejandro V, Scandling JD Jr, Sibley RK, Dafoe D, Alfrey E, Deen W et al (1995) Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft. J Clin Invest 95:820–831

    Article  PubMed  CAS  Google Scholar 

  52. Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61:855–861

    Article  PubMed  CAS  Google Scholar 

  53. Noiri E, Peresieni T, Miller F, Goligorsky MS (1996) In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 97:2377–2383

    Article  PubMed  CAS  Google Scholar 

  54. Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M et al (2003) l-Arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int 64:216–225

    Article  PubMed  CAS  Google Scholar 

  55. Kwon O, Hong SM, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia–reperfusion. Am J Physiol Renal Physiol 296:F25–F33

    Article  PubMed  CAS  Google Scholar 

  56. Ikeda U, Yamamoto K, Maeda Y, Shimpo M, Kanbe T, Shimada K (1997) Endothelin-1 inhibits nitric oxide synthesis in vascular smooth muscle cells. Hypertension 29:65–69

    PubMed  CAS  Google Scholar 

  57. Lebreton JP, Joisel F, Raoult JP, Lannuzel B, Rogez JP, Humbert G (1979) Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: evidence that alpha 2 HS glycoprotein is a negative acute-phase reactant. J Clin Invest 64:1118–1129

    Article  PubMed  CAS  Google Scholar 

  58. Demetriou M, Binkert C, Sukhu B, Tenenbaum HC, Denni JW (1996) Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. J Biol Chem 271:12755–12761

    Article  PubMed  CAS  Google Scholar 

  59. Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA (2008) Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 12:201

    Article  PubMed  Google Scholar 

  60. Hricik DE, Schulak JA, Sell DR, Fogarty JF, Monnier VM (1993) Effects of kidney or kidney–pancreas transplantation on plasma pentosidine. Kidney Int 43(2):398–403

    Article  PubMed  CAS  Google Scholar 

  61. Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592

    Article  PubMed  CAS  Google Scholar 

  62. Rojas A, Romay S, Gonzalez D, Herrera B, Delgado R, Otero K (2000) Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res 86:E50–E54

    PubMed  CAS  Google Scholar 

  63. Xu B, Chibber R, Ruggerio D, Kohner E, Ritter J, Ferro A (2003) Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J 17:1289–1291

    Article  PubMed  CAS  Google Scholar 

  64. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87(2):432–438

    Article  PubMed  CAS  Google Scholar 

  65. Huang W, Liu Y, Li L, Zhang R, Liu W, Wu J, Mao E, Tang Y (2011) HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways. Inflammation (in press)

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by Faculty of Pharmacy, Cairo University, Cairo, Egypt. We gratefully acknowledge Nephrology department, Faculty of Medicine, Cairo University.

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin A. H. Sadik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Supplementary material 2 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadik, N.A.H., Mohamed, W.A. & Ahmed, M.I. The association of receptor of advanced glycated end products and inflammatory mediators contributes to endothelial dysfunction in a prospective study of acute kidney injury patients with sepsis. Mol Cell Biochem 359, 73–81 (2012). https://doi.org/10.1007/s11010-011-1001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1001-4

Keywords

Navigation