Skip to main content
Log in

Homocysteine modulates the proteolytic potential of human arterial smooth muscle cells through a reactive oxygen species dependant mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pathological levels of homocysteine induce a dramatic degradation of arterial elastic structures. This severe metalloproteinase-dependant elastolysis affects elastic structures all over the media suggesting that smooth muscle cells (SMC) may participate to this process induced by homocysteine. Therefore, we investigated the effect of physiological (10 μM) and pathological (50, 100, and 500 μM) concentrations of homocysteine on the metalloproteinase-dependant proteolytic potential of human arterial SMC in culture. Pathological levels of homocysteine increased concomitantly the secretion of latent MMP-2 and TIMP-2 while the secretion of other elastolytic matrix metalloproteinases (MMPs) and expression of MT1-MMP were not altered. The increased secretion of latent MMP-2 induced by homocysteine was associated with an increased production of reactive oxygen species (ROS). Moreover, the increased secretion of latent MMP-2 induced by homocysteine was inhibited by antioxidant superoxide dismutase alone or in combination with catalase. These results suggest that SMC could participate, through an oxidative stress dependant secretion of elastolytic MMP-2, to the metalloproteinase-dependant degradation of arterial elastic structures induced by homocysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCully KS (1983) Homocysteine theory of arteriosclerosis: development and current status. Atheroscler Rev 11:157–246

    CAS  Google Scholar 

  2. Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidenc. Ann Intern Med 131:363–375

    CAS  PubMed  Google Scholar 

  3. Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI (2003) Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 101:3901–3907

    Article  CAS  PubMed  Google Scholar 

  4. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel V, Stern DM, Schmidt AM (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683

    Article  CAS  PubMed  Google Scholar 

  5. Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):S56–S64

    Article  CAS  PubMed  Google Scholar 

  6. Tsai MY, Arnett DK, Eckfeldt JH, Williams RR, Ellison RC (2000) Plasma homocysteine and its association with carotid intimal-medial wall thickness and prevalent coronary heart disease: NHLBI Family Heart Study. Atherosclerosis 151:519–524

    Article  CAS  PubMed  Google Scholar 

  7. Rolland PH, Friggi A, Barlatier A, Piquet P, Latrille V, Faye MM, Guillou J, Charpiot P, Bodard H, Ghiringhelli O et al (1995) Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation 91:1161–1174

    CAS  PubMed  Google Scholar 

  8. Charpiot P, Bescond A, Augier T, Chareyre C, Fraterno M, Rolland PH, Garcon D (1998) Hyperhomocysteinemia induces elastolysis in minipig arteries: structural consequences, arterial site specificity and effect of captopril-hydrochlorothiazide. Matrix Biol 17:559–574

    Article  CAS  PubMed  Google Scholar 

  9. Augier T, Charpiot P, Chareyre C, Remusat M, Rolland PH, Garcon D (1997) Medial elastic structure alterations in atherosclerotic arteries in minipigs: plaque proximity and arterial site specificity. Matrix Biol 15:455–467

    Article  CAS  PubMed  Google Scholar 

  10. Chaussalet M, Lamy E, Foucault-Bertaud A, Genovesio C, Sabatier F, Dignat-George F, Charpiot P (2004) Homocysteine modulates the proteolytic potential of human vascular endothelial cells. Biochem Biophys Res Commun 316:170–176

    Article  CAS  PubMed  Google Scholar 

  11. Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem 266:7870–7875

    CAS  PubMed  Google Scholar 

  12. Quantin B, Murphy G, Breathnach R (1989) Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28:5327–5334

    Article  CAS  PubMed  Google Scholar 

  13. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  14. Papatheodorou L, Weiss N (2007) Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal 9:1941–1958

    Article  CAS  PubMed  Google Scholar 

  15. Grenier G, Remy-Zolghadri M, Guignard R, Bergeron F, Labbe R, Auger FA, Germain L (2003) Isolation and culture of the three vascular cell types from a small vein biopsy sample. In Vitro Cell Dev Biol Anim 39:131–139

    PubMed  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  18. Mountain DJ, Singh M, Menon B, Singh K (2007) Interleukin-1beta increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: role of PKCalpha/beta1 and MAPKs. Am J Physiol Cell Physiol 292:C867–C875

    Article  CAS  PubMed  Google Scholar 

  19. Su B, Mitra S, Gregg H, Flavahan S, Chotani MA, Clark KR, Goldschmidt-Clermont PJ, Flavahan NA (2001) Redox regulation of vascular smooth muscle cell differentiation. Circ Res 89:39–46

    Article  CAS  PubMed  Google Scholar 

  20. Knox JB, Sukhova GK, Whittemore AD, Libby P (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation 95:205–212

    CAS  PubMed  Google Scholar 

  21. Sasaguri Y, Murahashi N, Sugama K, Kato S, Hiraoka K, Satoh T, Isomoto H, Morimatsu M (1994) Development-related changes in matrix metalloproteinase expression in human aortic smooth muscle cells. Lab Invest 71:261–269

    CAS  PubMed  Google Scholar 

  22. Lee HY, Chae IH, Kim HS, Park YB, Choi YS, Lee YW, Park SJ, Cha YJ (2002) Differential effects of homocysteine on porcine endothelial and vascular smooth muscle cells. J Cardiovasc Pharmacol 39:643–651

    Article  CAS  PubMed  Google Scholar 

  23. Murphy G, Crabbe T (1995) Gelatinases A and B. Methods Enzymol 248:470–484

    Article  CAS  PubMed  Google Scholar 

  24. Bescond A, Augier T, Chareyre C, Garcon D, Hornebeck W, Charpiot P (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem Biophys Res Commun 263:498–503

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm S, He CS (1989) Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 86:8207–8211

    Article  CAS  PubMed  Google Scholar 

  26. Doronzo G, Russo I, Mattiello L, Trovati M, Anfossi G (2005) Homocysteine rapidly increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. Role of phosphatidyl inositol 3-kinase and mitogen activated protein kinase pathways. Thromb Haemost 94:1285–1293

    CAS  PubMed  Google Scholar 

  27. Guo H, Wang P, You B, Xing Y, Lee JD (2007) Chinese yellow wine inhibits production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Clin Nutr 26:348–354

    Article  CAS  PubMed  Google Scholar 

  28. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    CAS  PubMed  Google Scholar 

  29. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  30. Berton A, Godeau G, Emonard H, Baba K, Bellon P, Hornebeck W, Bellon G (2000) Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biol 19:139–148

    Article  CAS  PubMed  Google Scholar 

  31. Emonard H, Hornebeck W (1997) Binding of 92 kDa and 72 kDa progelatinases to insoluble elastin modulates their proteolytic activation. Biol Chem 378:265–271

    Article  CAS  PubMed  Google Scholar 

  32. Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP, Bascands JL (2002) In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 110:371–379

    CAS  PubMed  Google Scholar 

  33. Luchtefeld M, Grote K, Grothusen C, Bley S, Bandlow N, Selle T, Struber M, Haverich A, Bavendiek U, Drexler H, Schieffer B (2005) Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem Biophys Res Commun 328:183–188

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi Y, Tanaka H, Okada T, Konishi H, Takahashi M, Ito M, Asai J (1996) The effects of ultraviolet A and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res 288:39–44

    Article  CAS  PubMed  Google Scholar 

  35. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Lassegue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42–48

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Lamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, X.D., Foucault-Bertaud, A., Genovesio, C. et al. Homocysteine modulates the proteolytic potential of human arterial smooth muscle cells through a reactive oxygen species dependant mechanism. Mol Cell Biochem 335, 203–210 (2010). https://doi.org/10.1007/s11010-009-0270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0270-7

Keywords

Navigation