Skip to main content
Log in

Novel Fluorophores as Building Blocks for Optical Probes for In Vivo Near Infrared Fluorescence (NIRF) Imaging

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φ f) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φ f values of the bioconjugated dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bremer C, Ntziachristos V, Mahmood U, Tung CH, Weissleder R (2001) Advances in optical imaging. Radiologe 41:131–137

    Article  CAS  PubMed  Google Scholar 

  2. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near infrared fluorescent probes. Nat Biotechnol 17:375–378

    Article  CAS  PubMed  Google Scholar 

  3. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    CAS  PubMed  Google Scholar 

  4. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  PubMed  Google Scholar 

  5. Licha K (2002) Contrast agents for optical imaging. Top Curr Chem 222:1–29

    Article  CAS  Google Scholar 

  6. Wagnières GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    PubMed  Google Scholar 

  7. Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 35:479–485

    Article  CAS  PubMed  Google Scholar 

  8. Ranji M, Kanemoto S, Matsubara M, Grosso MA, Gorman JH III, Gorman RC, Jaggard DL, Chance B (2006) Fluorescence spectroscopy and imaging of myocardial apaptosis. J Biomed Opt 11:064036-1–064036-4

    Article  Google Scholar 

  9. Mathejczyk J, Dullin C, Napp J, Resch-Genger U, Pauli J, Söling A, Tietze L-F, Kessler H, Alves F (2009) Functional and anatomical monitoring of glioblastoma xenografts in vivo by different imaging modalities. J Mol Imaging and Biology, submitted

  10. Achilefu S (2004) Lighting up tumors with receptor-specific optical molecular probes. Technology in Cancer Research & Treatment 3:393–409

    CAS  Google Scholar 

  11. Hilderbrand SA, Weissleder R, Tung CH (2005) Monofunctional near-infrared fluorochromes for imaging applications. Bioconjug Chem 16:1275–1281

    Article  CAS  PubMed  Google Scholar 

  12. Hansch A, Frey O, Hilger I, Sauner D, Haas M, Schmidt D, Kurrat C, Gajda M, Malich A, Bräuer R, Kaiser WA (2004) Diagnosis of arthritis using near-infrared fluorochrome Cy5.5. Invest Radiol 39:626–632

    Article  CAS  PubMed  Google Scholar 

  13. Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, Kaiser WA (2004) Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 14:1124–1129

    Article  PubMed  Google Scholar 

  14. Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Fluorescence-enhanced near infrared diagnostic imaging with contrast agents. Curr Op Biol 6:642–650

    Article  CAS  Google Scholar 

  15. Bremer C, Ntziachristos V, Weitkamp B, Theilmeier G, Heindel W, Weissleder R (2005) Optical imaging of spontaneous breast tumors using protease sensing “smart” optical probes. Invest Radiol 40:321–327

    Article  CAS  PubMed  Google Scholar 

  16. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Dahldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2031

    Article  PubMed  Google Scholar 

  17. Kovar JL, Simpson MA, Schutz-Geschwender A, Olive DM (2007) A systematic approach to the development agents for optical imaging of mouse of fluorescent contrast cancer models. Anal Biochem 367:1–12

    Article  CAS  PubMed  Google Scholar 

  18. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Meth 5:763–775

    Article  CAS  Google Scholar 

  19. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  PubMed  Google Scholar 

  20. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    Article  CAS  PubMed  Google Scholar 

  21. Patonay G, Antoine MD (1991) Near-infrared fluorogenic labels—new approach to an old problem. Anal Chem 63:A321–A326

    Article  Google Scholar 

  22. Ballou B, Ernst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12:795–805

    Article  CAS  PubMed  Google Scholar 

  23. Adams KE, Ke SI, Kwon S, Liang F, Fan Z, Lu Y, Hirschi K, Mawad ME, Barry MA, Sevick-Muraca EM (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12:024017-1–024017-9

    Article  Google Scholar 

  24. Holtke C, von Wallbrunn A, Kopka K, Schober O, Heindel W, Schafers M, Bremer C (2007) A fluorescent photoprobe for the imaging of endothelin receptors. Bioconjug Chem 18:685–694

    Article  PubMed  Google Scholar 

  25. Tong Z, Singh G, Rainbow AJ (2001) Extreme dark cytotoxicity of Nile Blue A in normal human fibroblasts. Photochem Photobiol 74:707–711

    Article  CAS  PubMed  Google Scholar 

  26. Ho JD, Tsai RJ, Chen SN, Chen HC (2003) Cytotoxicity of indocyanine green on retinal pigment epithelium. Implications for macular hole surgery. Arch Ophthalmol 121:1423–1429

    Article  CAS  PubMed  Google Scholar 

  27. Ikagawa H, Yoneda M, Iwaki M, Isogai Z, Tsujii K, Yamazaki R, Kamiya T, Zako M (2005) Chemical toxicity of indocyanine green damages retinal pigment epithelium. Invest Ophthalmol Vis Sci 46:2531–2539

    Article  PubMed  Google Scholar 

  28. Skrivanova K, Skorpikova J, Svihalek J, Mornstein V, Janisch R (2006) Photochemical properties of a potential photosensitiser indocyanine green in vitro. J Photochem Photobiol B Biol 85:150–154

    Article  CAS  Google Scholar 

  29. Panchuk-Voloshina N, Haughland RP, Bishop-Stewart J, Bhalgal MK, Millard PJ, Mao F, Leung W-Y, Haughland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    CAS  PubMed  Google Scholar 

  30. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haughland RP, Haughland RP (2003) Quantitative comparison of long-wavelength Alexa Fluo dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712

    CAS  PubMed  Google Scholar 

  31. Bradley EC, Barr JW (1968) Determination of blood volume using indocyanine green (cardio-green) dye. Life Sci 7:1001–1007

    Article  CAS  PubMed  Google Scholar 

  32. Klocke FJ, Greene DG, Koberstein RC (1968) Indicator-dilution measurement of cardiac output with dissolved hydrogen. Circ Res 22:841–853

    CAS  PubMed  Google Scholar 

  33. Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Article  CAS  PubMed  Google Scholar 

  34. Leevy CM, Smith F, Longueville J (1967) Indocyanine green clearance as a test for hepatic function. Evaluation by dichromatic ear densitometry. JAMA 200:236–240

    Article  CAS  PubMed  Google Scholar 

  35. Galanzha EI, Shashkov EV, Tuchin VV, Zharov VP (2008) In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry A 73A:884–894

    Article  Google Scholar 

  36. Stoyanov S (2001) Probes: dyes fluorescing in the NIR region. In: Raghavachari R (ed) Near-infrared applications in biotechnology. Marcel Dekker Inc., New York, pp 35–93

    Google Scholar 

  37. Golijanin D, Madeb RR, Singer E, Wood RW, Reeder JE, Dogra V, Wu G, Yao J, Joseph J, Erturk E, Messing EE (2007) Near infrared fluorescence (NIRF) for intraoperative imaging of renal cortical tumors using intravenous indocyanine green (ICG). J Endourol 21:A93–A94

    Google Scholar 

  38. Soper SA, Mattingly QL (1994) Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes: Implications to the design of near-IR fluorochromes with high fluorescence efficiencies. J Am Chem Soc 116:3744–3752

    Article  CAS  Google Scholar 

  39. Landsman MLJ, Kwant G, Mook GA, Zijlstra WG (1976) Light absorbing properties, stability and spectral stabilization of indocyanine green. J Appl Physiol 40:575–583

    CAS  PubMed  Google Scholar 

  40. Muckle TJ (1976) Plasma protein binding of indocyanine green. Biochem Med 15:17–21

    Article  CAS  PubMed  Google Scholar 

  41. Moody ED, Viskari PJ, Colyer CL (1999) Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 729:55–64

    Article  CAS  PubMed  Google Scholar 

  42. Gathje J, Steuer R, Nicholes KR (1976) Stability studies on indocyanine green dye. J Appl Physiol 29:181–185

    Google Scholar 

  43. Lisy MR, Schüler E, Lehmann F, Czerney P, Kaiser WA, Hilger I (2006) Diagnosis of peritonitis using near-infrared optical imaging of in vivo labeled monocytes-macrophages. J Biomed Opt 11:064014-1–064014-9

    Article  Google Scholar 

  44. Lisy MR, Goermar A, Thomas C, Pauli J, Resch-Genger U, Kaiser WA, Hilger I (2008) In vivo near infrared fluorescence imaging of carcinoembryonic antigen expressing tumor cells in mice. Radiology 247:779–787

    Article  PubMed  Google Scholar 

  45. Lisy MR, Hartung A, Lang C, Schuler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241

    Article  CAS  PubMed  Google Scholar 

  46. Mujumdar RB, Ernst LA, Mujumdar SR, Waggoner AS (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10:11–19

    Article  CAS  PubMed  Google Scholar 

  47. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schönenberger B, Nording P (2005) Traceability in fluorometry: part II. Spectral fluorescence standards. J Fluoresc 15:315–336

    Article  CAS  PubMed  Google Scholar 

  48. Pfeifer D, Hoffmann K, Hoffmann A, Monte C, Resch-Genger U (2006) The Calibration Kit Spectral Fluorescence Standards—A simple and certified tool for the standardization of the spectral characteristics of fluorescence instruments. J Fluoresc 16:581–587

    Article  CAS  PubMed  Google Scholar 

  49. Mielenz KD, Cehelnik ED, McKenzie RL (1976) Elimination of polarization bias in fluorescence intensity Measurements. J Chem Phys 64:370–374

    Article  CAS  Google Scholar 

  50. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science+Business Media, New York

    Google Scholar 

  51. Braslavsky SE (2007) Glossary of terms used in photochemistry. Pure Appl Chem 79:293–465

    Article  CAS  Google Scholar 

  52. Sens R, Drexhage KH (1981) Fluorescence quantum yield of oxazine and carbazine laser dyes. J Lumin 24/25:709–712

    Article  Google Scholar 

  53. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: Suitable procedures and achievable uncertainties. Anal Chem 81:6285–6294

    Article  CAS  PubMed  Google Scholar 

  54. Rurack K, Bricks JL, Schulz B, Maus M, Reck G, Resch-Genger U (2000) Substituted 1, 5-diphenyl-3-benzothiazol-2-yl-2-pyrazolines: synthesis, X-ray structure, photophysics, and cation complexation properties. J Phys Chem A 104:6171–6188

    Article  CAS  Google Scholar 

  55. Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Neukammer J, Nitschke R, Ebert B, Macdonald R (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15:337–362

    Article  CAS  PubMed  Google Scholar 

  56. Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser WA, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503

    Article  CAS  PubMed  Google Scholar 

  57. Mauerer M, Penzkofer A, Zweck J (1998) Dimerization. J-aggregation and J-disaggregation dynamics of indocyanine green in heavy water. J Photochem Photobiol B Biol 47:68–73

    Article  CAS  Google Scholar 

  58. Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjug Chem 11:696–704

    Article  CAS  PubMed  Google Scholar 

  59. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2001) Cyanines during the 1990s: a review. Chem Rev 100:1973–2011

    Article  Google Scholar 

  60. Rettig W, Rurack K, Sczepan M (2000) From cyanines to styryl bases—Photophysical properties, photochemical mechanism, and cation sensing abilities of charged and neutral polymethinic dyes. In: Valeur B, Brochon JC (eds) Methods and applications of fluorescence spectroscopy. Springer, Berlin, pp 125–227

    Google Scholar 

  61. Schobel U, Egelhaaf H-J, Brecht A, Oelkrug D, Gauglitz G (1999) New donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconjug Chem 10:1107–1114

    Article  CAS  PubMed  Google Scholar 

  62. Schobel U, Egelhaaf H-J, Fröhlich D, Brecht A, Oelkrug D, Gauglitz G (2000) Mechanism of fluorescence quenching in donor-acceptor labeled antibody conjugates. J Fluoresc 10:147–154

    Article  CAS  Google Scholar 

  63. Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, Mujumdar RB, Mujumdar SR, Hakala TR (1995) Tumor labeling in-vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol Immunother 41:257–263

    Article  CAS  PubMed  Google Scholar 

  64. Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) H-Type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. Cancer Res 69:1268–1272

    Article  CAS  PubMed  Google Scholar 

  65. West W, Pearce S (1965) The dimeric state of cyanine dyes. J Phys Chem 69:1894–1903

    Article  CAS  Google Scholar 

  66. Philip R, Penzkofer A, Bäumler W, Szeimies RM, Abels C (1996) Absorption and fluorescence investigation of indocyanine green. J Photochem Photobiol A Chem 96:137–148

    Article  CAS  Google Scholar 

  67. Ahn YH, Lee JS, Chang YT (2008) Selective human serum albumin sensor from the screening of a fluorescent rosamine library. J Com Chem 10:376–380

    Article  CAS  Google Scholar 

  68. Kessler MA, Wolfbeis OS (1992) Laser-induced fluorescence determination of albumin using long wavelength absorbing molecular probes. Anal Biochem 20:254–259

    Article  Google Scholar 

  69. Antoine MD, Devanathan S, Patonay G (1991) Determination of hydrophobicity of albumins and other proteins using a near-infrared probe. Spectrochim Acta 47A:501–508

    CAS  Google Scholar 

  70. Enaida H, Sakamoto T, Hisatomi T, Goto Y, Ishibashi T (2002) Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes. Graefes Arch Clin Exp Ophthalmol 240:209–213

    Article  PubMed  Google Scholar 

  71. Riefke B, Licha K, Semmler W (1997) Contrast media for optical mammography. Radiologe 37:749–755

    Article  CAS  PubMed  Google Scholar 

  72. Cascorbi I, Foret M (1991) Interaction of xenobiotics on the glucose-transport system and the Na+/K(+)-ATPase of human skin fibroblasts. Environ Saf 21:38–46

    Article  CAS  Google Scholar 

  73. Luschtinetz F, Dosche C, Kumke MU (2009) Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes. Bioconjug Chem 20:576–582

    Article  CAS  Google Scholar 

  74. Cox WG, Beaudet MP, Agnew JY, Ruth JL (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331:243–254

    Article  PubMed  Google Scholar 

  75. Povrozin YA, Kolosova OS, Obukhova OM, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Seta-633-A NIR fluorescence lifetime label for low-molecular-weight analytes. Bioconjug Chem 20:1807–1812

    Article  CAS  PubMed  Google Scholar 

  76. Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    Article  CAS  PubMed  Google Scholar 

  77. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to DYOMICS GmbH (Jena, Germany) for the generous supply of the dyes DY-676, DY-681, and DY-682. This work was partially supported by the Thüringer Aufbaubank. Furthermore, we thank Yvonne Heyne for assistance in the cytotoxicity studies and Franziska Hamann for the preparation of the IgG conjugates.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ingrid Hilger or Ute Resch-Genger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauli, J., Brehm, R., Spieles, M. et al. Novel Fluorophores as Building Blocks for Optical Probes for In Vivo Near Infrared Fluorescence (NIRF) Imaging. J Fluoresc 20, 681–693 (2010). https://doi.org/10.1007/s10895-010-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0603-7

Keywords

Navigation