Skip to main content
Log in

Measurement of blood-oxygen saturation using a photoacoustic technique in the rabbit hypoxemia model

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The golden standard method to obtain accurate blood oxygen saturation is blood gas analysis that needs invasive procedure of blood sampling. Photoacoustic technique enables us to measure real-time blood oxygen saturation without invasive procedure. The aim of this study is to use the photoacoustic technique, an optical method, for accurately determining oxygen saturation in vivo. We measured induced photoacoustic signals of arterial blood in the rabbit model of stable hypoxemia after irradiation at 750 and 800 nm. Oxygen saturation was calculated from the photoacoustic signals using two calibration curves. Calibration curve 1 is a conventional curve derived from the absorbance coefficient of hemoglobin, whereas calibration curve 2 is derived from the photoacoustic signals obtained from the original blood vessel model. Simultaneously, blood-gas analysis was performed to obtain the reference standard of oxygen saturation. Regression analysis and Bland–Altman analysis were performed to assess the accuracy of oxygen saturation obtained using the two methods. The oxygen saturation calculated using calibration curves 1 and 2 showed strong correlations with the reference standard in regression analysis (R = 0.965, 0.964, respectively). The Bland–Altman analysis revealed better agreement and precision with calibration curve 2, whereas there was significant underestimation of values obtained using calibration curve 1. Photoacoustic measurement of oxygen saturation using calibration curve 2 provided an accurate estimate of oxygen saturation, which was similar to that obtained using a portable blood-gas analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toffaletti J, Zijlstra WG. Misconceptions in reporting oxygen saturation. Anesth Analg. 2007;105(6):S5–9.

    Article  PubMed  Google Scholar 

  2. Scheer BV, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):1.

    Article  Google Scholar 

  3. O’grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control. 2011;39(4):S1-34.

    PubMed  Google Scholar 

  4. Severinghaus JW. Takuo Aoyagi: discovery of pulse oximetry. Anesth Analg. 2007;105(6):S1–4.

    Article  PubMed  Google Scholar 

  5. Hasegawa J, Nakamura M, Matsuoka R, Mimura T, Ichizuka K, Sekizawa A, et al. Evaluation of placental function using near infrared spectroscopy during fetal growth restriction. J Perinat Med. 2010;38(1):29–32.

    Article  PubMed  Google Scholar 

  6. Kakogawa J, Kanayama N. Application of near-infrared spectroscopy for the evaluation of placental oxygenation. Open Med Devices J. 2012;4:22–7.

    Article  Google Scholar 

  7. Sørensen A, Peters D, Simonsen C, Pedersen M, Stausbøl-Grøn B, Christiansen OB, et al. Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat Diagn. 2013;33(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  8. Sinding M, Peters DA, Frøkjær JB, Christiansen OB, Uldbjerg N, Sørensen A. Reduced placental oxygenation during subclinical uterine contractions as assessed by BOLD MRI. Placenta 2016;39:16–20.

    Article  CAS  PubMed  Google Scholar 

  9. Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Laufer J, Elwell C, Delpy D, Beard P. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Phys Med Biol. 2005;50(18):4409.

    Article  PubMed  Google Scholar 

  11. Zhang HF, Maslov K, Sivaramakrishnan M, Stoica G, Wang LV. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl Phys Lett. 2007;90(5):053901.

    Article  CAS  Google Scholar 

  12. Ishihara M, Shinchib M, Horiguchi A, Shinmotoc H, Tsudad H, Irisawae K et al, editors Possibility of transrectal photoacoustic imaging-guided biopsy for detection of prostate cancer. Proc of SPIE Vol; 2017.

  13. Märk J, Wagener A, Pönick S, Grötzinger C, Zhang E, Laufer J, editors Motion corrected photoacoustic difference imaging of fluorescent contrast agents. SPIE BiOS; 2016: International Society for Optics and Photonics.

  14. Petri M, Stoffels I, Jose J, Leyh J, Schulz A, Dissemond J, et al. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study. J Wound Care. 2016;25(2):87–91.

    Article  CAS  PubMed  Google Scholar 

  15. Petrov I, Petrov Y, Prough D, Cicenaite I, Deyo D, Esenaliev R. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals. Opt Express. 2012;20(4):4159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, et al. Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(5):888–97.

    Article  PubMed  Google Scholar 

  17. Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, et al. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. arXiv preprint arXiv:151105846. 2015.

  18. Sei K, Fujita M, Okawa S, Hirasawa T, Kushibiki T, Sasa H, et al. Appropriate timing of blood sampling for blood gas analysis in the ventilated rabbit. J Surg Res. 2016;206(2):325–36.

    Article  CAS  PubMed  Google Scholar 

  19. Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N, et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep. 2014;4:6525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Hu S, Maslov K, Zhang Y, Xia Y, Wang LV. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure. Opt Lett. 2011;36(7):1029–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prahl S. Optical absorption of hemoglobin, vol. 15. Oregon: Oregon Medical Laser Center; 1999. http://omlc.ogi.edu/spectra/hemoglobin/index.html.

  22. Feiner JR, Rollins MD, Sall J, Eilers H, Au P, Bickler PE. Accuracy of carboxyhemoglobin detection by pulse CO-oximetry during hypoxemia. Anesth Analg. 2013;117(4):847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015;10(2):299–320.

    Article  CAS  PubMed  Google Scholar 

  24. Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;2011:rsfs20110028.

    Google Scholar 

  25. Jiang Y, Forbrich A, Harrison T, Zemp RJ. Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study. J Biomed Opt. 2012;17(3):0360121–8.

    Article  CAS  Google Scholar 

  26. McGuill MW, Rowan AN. Biological effects of blood loss: implications for sampling volumes and techniques. ILAR J. 1989;31(4):5–20.

    Article  Google Scholar 

  27. World Health Organization. Recommended methodology for using WHO international reference preparations for thromboplastin. Geneva: World Health Organization; 1983.

    Google Scholar 

  28. Vandegriff K, Olson J. The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. J Biol Chem. 1984;259(20):12609–18.

    CAS  PubMed  Google Scholar 

  29. Ishihara M, Sato M, Kaneshiro N, Mitani G, Sato S, Mochida J, et al. Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method. Lasers Surg Med. 2006;38(3):249–55.

    Article  PubMed  Google Scholar 

  30. Fischer B, Chavatte-Palmer P, Viebahn C, Santos AN, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012;144(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Lipman N, Marini R, Erdman S. A comparison of ketamine/xylazine and ketamine/xylazine/acepromazine anesthesia in the rabbit. Lab Anim Sci. 1990;40(4):395–8.

    CAS  PubMed  Google Scholar 

  32. Lee RC. The rectal temperature of the normal rabbit. Am J Physiol Legacy Content. 1939;125(3):521–9.

    Article  Google Scholar 

  33. Kim KS, Shim JC, Jun JH, Lee KH, Chung CW. Rabbits treated with chronic isepamicin are resistant to mivacurium and rocuronium. Anesth Analg. 1999;88(3):654–8.

    Article  CAS  PubMed  Google Scholar 

  34. Terakawa Y, Ichinohe T, Kaneko Y. Rocuronium and vecuronium do not affect mandibular bone marrow and masseter muscular blood flow in rabbits. J Oral Maxillofacial Surg. 2010;68(1):15–20.

    Article  Google Scholar 

  35. Stahl WR. Scaling of respiratory variables in mammals. J Appl Physiol. 1967;22(3):453–60.

    Article  CAS  PubMed  Google Scholar 

  36. Drorbaugh JE. Pulmonary function in different animals. J Appl Physiol. 1960;15(6):1069–72.

    Article  CAS  PubMed  Google Scholar 

  37. Lowry DW, Mirakhur RK, McCarthy GJ, Carroll MT, McCourt KC. Neuromuscular effects of rocuronium during sevoflurane, isoflurane, and intravenous anesthesia. Anesth Analg. 1998;87(4):936–40.

    CAS  PubMed  Google Scholar 

  38. Kiel J, Van Heuven W. Ocular perfusion pressure and choroidal blood flow in the rabbit. Investig Ophthalmol Vis Sci. 1995;36(3):579–85.

    CAS  Google Scholar 

  39. Aeschbacher G, Webb A. Propofol in rabbits. 2. Long-term anesthesia. Lab Anim Sci. 1993;43(4):328–35.

    CAS  PubMed  Google Scholar 

  40. Shah PS, Shah VS. Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Library. 2008; CD002772.

  41. Zotti A, Banzato T, Cozzi B. Cross-sectional anatomy of the rabbit neck and trunk: comparison of computed tomography and cadaver anatomy. Res Vet Sci. 2009;87(2):171–6.

    Article  PubMed  Google Scholar 

  42. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;327(8476):307–10.

    Article  Google Scholar 

  43. Hanneman SK. Design, analysis and interpretation of method-comparison studies. AACN Adv Crit Care. 2008;19(2):223.

    PubMed  PubMed Central  Google Scholar 

  44. American National Standards Institute. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1-2014. New York: American National Standards Institute; 2014.

    Google Scholar 

  45. Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 2015;5(3):289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lakshman M, Needles A. Screening and quantification of the tumor microenvironment with micro-ultrasound and photoacoustic imaging. Nat Methods. 2015;12(4):iii–v.

    Article  CAS  Google Scholar 

  47. Esenaliev RO, Larina IV, Larin KV, Deyo DJ, Motamedi M, Prough DS. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. Appl Opt. 2002;41(22):4722–31.

    Article  PubMed  Google Scholar 

  48. Laufer J, Delpy D, Elwell C, Beard P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys Med Biol. 2006;52(1):141.

    Article  CAS  PubMed  Google Scholar 

  49. Hammer M, Schweitzer D, Michel B, Thamm E, Kolb A. Single scattering by red blood cells. Appl Opt. 1998;37(31):7410–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sakota D, Takatani S. Photon-cell interactive Monte Carlo model based on the geometric optics theory for photon migration in blood by incorporating both extra-and intracellular pathways. J Biomed Opt. 2010;15(6):065001–14.

    Article  PubMed  Google Scholar 

  51. Kocsis L, Herman P, Eke A. The modified Beer–Lambert law revisited. Phys Med Biol. 2006;51(5):N91.

    Article  CAS  PubMed  Google Scholar 

  52. Friebel M, Do K, Hahn A, Mu G. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J Biomed Opt. 1999;4(1):36–46.

    Article  PubMed  Google Scholar 

  53. Reynolds KJ, Palayiwa E, Moyle JT, Sykes MK, Hahn CE. The effect of dyshemoglobins on pulse oximetry: part I, theoretical approach and part II, experimental results using an in vitro test system. J Clin Monitor. 1993;9(2):81–90.

    Article  CAS  Google Scholar 

  54. Verwaerde P, Malet C, Lagente M, De La Farge F, Braun J. The accuracy of the i-STAT portable analyser for measuring blood gases and pH in whole-blood samples from dogs. Res Vet Sci. 2002;73(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  55. Zijlstra W, Buursma A, Meeuwsen-Van der Roest W. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem. 1991;37(9):1633–8.

    CAS  PubMed  Google Scholar 

  56. Agusti A, Roca J, Barbera J, Casademont J, Rodriguez-Roisin R, Wagner P. Effect of sampling site on femoral venous blood gas values. J Appl Physiol. 1994;77(4):2018–22.

    Article  CAS  PubMed  Google Scholar 

  57. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, et al. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118(4):823–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the support by National Defense Medical College Animal Experiment Facility and Mr. Yuta Ikeda for his dedicated assistance to collect data. This study was partly supported by Japan Society for the Promotion of Science (KAKENHI, Grant Number 16K16413).

Funding

This study was supported by the fund of National Defense Medical College and Japan Society for the Promotion of Science (KAKENHI, Grant Number 16K16413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Fujita.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Ethical approval

The experimental protocol used in this study was approved by the Institutional Review Board on Animal Care of National Defense Medical College, Japan (Approval number; 13091).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sei, K., Fujita, M., Hirasawa, T. et al. Measurement of blood-oxygen saturation using a photoacoustic technique in the rabbit hypoxemia model. J Clin Monit Comput 33, 269–279 (2019). https://doi.org/10.1007/s10877-018-0166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0166-8

Keywords

Navigation