Skip to main content
Log in

Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50.

    Article  CAS  PubMed  Google Scholar 

  2. Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.

    Article  CAS  PubMed  Google Scholar 

  3. Ridler C. Obesity: inheritance via mitochondria. Nat Rev Endocrinol. 2016;12(9):497.

    Article  CAS  PubMed  Google Scholar 

  4. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–75.

    Article  CAS  PubMed  Google Scholar 

  5. Burte F, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  6. Wallace DC, Chalkia D, Singh LN. Mitochondrial etiology of psychiatric disorders-reply. JAMA Psychiatry. 2018;75(5):527–8.

    Article  PubMed  Google Scholar 

  7. Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry. 2018;83(9):722–30.

    Article  CAS  PubMed  Google Scholar 

  8. Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.

    Article  CAS  PubMed  Google Scholar 

  10. Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3–4.

    Article  PubMed  Google Scholar 

  11. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  12. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.

    Article  PubMed  Google Scholar 

  13. Baumann K. Development: eliminating paternal mitochondria. Nat Rev Mol Cell Biol. 2016;17(8):464.

    Article  CAS  PubMed  Google Scholar 

  14. Trimarchi JR, Liu L, Porterfield DM, Smith PJS, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.

    Article  CAS  PubMed  Google Scholar 

  15. Porterfield DM, Trimarchi JR, Keefe DL, Smith PJS. Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull. 1998;195(2):208–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Keefe DL. Nuclear transfer methods to study aging. Methods Mol Biol. 2007;371:191–207.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18(2):223–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NME, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adashi EY, Cohen IG. Mitochondrial replacement therapy: unmade in the USA. JAMA. 2017;317(6):574–5.

    Article  PubMed  Google Scholar 

  21. Adashi EY, Cohen IG. Mitochondrial replacement therapy: born in the USA: the untold story of a conceptual breakthrough. Am J Obstet Gynecol. 2017;217(5):561–3.

    Article  PubMed  Google Scholar 

  22. Adashi EY, Cohen IG. Preventing mitochondrial disease: a path forward. Obstet Gynecol. 2018;131(3):553–6.

    Article  PubMed  Google Scholar 

  23. McCarthy M. Scientists call for moratorium on clinical use of human germline editing. BMJ. 2015;351:h6603.

    Article  PubMed  Google Scholar 

  24. Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril. 2012;98(5):1236–40.

    Article  CAS  PubMed  Google Scholar 

  25. Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.

    Article  CAS  PubMed  Google Scholar 

  27. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adashi EY, Caplan AL, Capron A, Chapman AR, Cho M, Clayton EW, et al. In support of mitochondrial replacement therapy. Nat Med. 2019;25(6):870–1.

    Article  CAS  PubMed  Google Scholar 

  29. Sauer MV, Kavic SM. Oocyte and embryo donation 2006: reviewing two decades of innovation and controversy. Reprod BioMed Online. 2006;12(2):153–62.

    Article  PubMed  Google Scholar 

  30. Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free estimation of recent genetic relatedness. Am J Hum Genet. 2016;98(1):127–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roshyara NR, Scholz M. Impact of genetic similarity on imputation accuracy. BMC Genet. 2015;16:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35(8):809–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gorman GS, Grady JP, Turnbull DM. Mitochondrial donation--how many women could benefit? N Engl J Med. 2015;372(9):885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolf DP, Hayama T, Mitalipov S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 2017;36(15):2177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod BioMed Online. 2017;34(4):361–8.

    Article  PubMed  Google Scholar 

  36. Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry. 2017;74(11):1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, et al. Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol. 2019;10:876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019;120:15–9.

    Article  PubMed  Google Scholar 

  39. Govindaraj P, Rani B, Sundaravadivel P, Vanniarajan A, Indumathi KP, Khan NA, et al. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion. 2019.

  40. Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. Assisted reproductive technology surveillance - United States, 2016. MMWR Surveill Summ. 2019;68(4):1–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.

    Article  CAS  PubMed  Google Scholar 

  42. Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci U S A. 1983;80(19):6076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod BioMed Online. 2008;16(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell. 2017;168(6):977–989.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2019. https://doi.org/10.1016/j.ejmg.2019.03.002.

  46. Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102(10):3839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Leese HJ, Guerif F, Allgar V, Brison DR, Lundin K, Sturmey RG. Biological optimization, the Goldilocks principle, and how much is lagom in the preimplantation embryo. Mol Reprod Dev. 2016;83(9):748–54.

    Article  CAS  PubMed  Google Scholar 

  48. Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scantland S, Tessaro I, Macabelli CH, Macaulay AD, Cagnone G, Fournier É, et al. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes. Biol Reprod. 2014;91(3):75.

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004;71(5):1724–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339.e22.

    Article  CAS  PubMed  Google Scholar 

  53. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod BioMed Online. 2016;33(6):737–44.

    Article  PubMed  Google Scholar 

  55. Barritt J, et al. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.

    Article  CAS  PubMed  Google Scholar 

  56. Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33(6):410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Couzin-Frankel J. Eggs’ power plants energize new IVF debate. Reproductive Medicine. 2015. https://doi.org/10.1126/science.348.6230.14.

  58. Weintraub K. Turmoil at troubled fertility company Ovascience. In: MIT Technology Review. Cambridge: MIT Press; 2016.

    Google Scholar 

  59. Meiling B. Once a multibillion dollar company, OvaScience ends a pennystock vehicle for Millendo’s reverse merger. Endpoints News; 2018.

  60. Labarta E, de los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril. 2019;111(1):86–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Keefe.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keefe, D.L. Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope. J Assist Reprod Genet 36, 1781–1785 (2019). https://doi.org/10.1007/s10815-019-01529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01529-3

Keywords

Navigation