Skip to main content

Advertisement

Log in

Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Postoperative ileus is a common complication after intra-abdominal surgery. Nitric oxide produced by macrophages in the inflamed gastrointestinal tract plays a crucial role in the pathogeny of postoperative ileus. Honokiol, extracted from the bark of Magnolia spp., is a natural compound with a biphenolic structure. In the present study, we examined the effect of honokiol on postoperative ileus and discussed its site of action. Postoperative ileus model mice were generated by surgical intestinal manipulation. Mice were administered honokiol (10 mg kg−1, per os) 1 h before and after intestinal manipulation. Gastrointestinal transit, leukocyte infiltration, and messenger RNA (mRNA) expression of inflammatory mediators were measured in postoperative ileus model mice with or without honokiol. We also investigated the inflammatory effect of honokiol in lipopolysaccharide-stimulated peritoneal macrophages. Gastrointestinal transit was delayed in postoperative ileus model mice and honokiol recovered the impaired transit. Honokiol significantly inhibited leukocyte infiltration and upregulation of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and inducible nitric oxide synthase in the ileal muscle layer of postoperative ileus model mice. In peritoneal macrophages activated by lipopolysaccharide, honokiol significantly inhibited the upregulated mRNA expression of proinflammatory cytokines and inducible nitric oxide synthase. Honokiol significantly recovered gastrointestinal dysmotility and inhibited intestinal inflammation in postoperative ileus. Moreover, honokiol was suggested to have effects on macrophages, namely, inhibiting mRNA expression of proinflammatory cytokines and inducible nitric oxide synthase. Taken together, honokiol represents a potential novel therapeutic agent for postoperative ileus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

FITC:

Fluorescein isothiocyanate

GABAAR:

Gamma-aminobutyric acid A receptor

HNK:

Honokiol

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IM:

Intestinal manipulation

iNOS:

Inducible NOS

LPS:

Lipopolysaccharide

MnSOD:

Manganese superoxide dismutase

MPO:

Myeloperoxidase

OSCP:

Oligomycin-sensitivity-conferring protein

POI:

Postoperative ileus

ROS:

Reactive oxygen species

TBS:

Tris-buffered saline

TNF-α:

Tumor necrosis factor-α

References

  1. van Bree, S.H., et al. 2012. New therapeutic strategies for postoperative ileus. Nature Reviews. Gastroenterology & Hepatology 9 (11): 675–683.

    Article  Google Scholar 

  2. Kalff, J.C., et al. 2000. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118 (2): 316–327.

    Article  CAS  PubMed  Google Scholar 

  3. Bauer, A.J., and G.E. Boeckxstaens. 2004. Mechanisms of postoperative ileus. Neurogastroenterology and Motility 16 (Suppl 2): 54–60.

    Article  PubMed  Google Scholar 

  4. Wehner, S., et al. 2007. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56 (2): 176–185.

    Article  CAS  PubMed  Google Scholar 

  5. Augestad, K.M., and C.P. Delaney. 2010. Postoperative ileus: impact of pharmacological treatment, laparoscopic surgery and enhanced recovery pathways. World Journal of Gastroenterology: WJG 16 (17): 2067–2074.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mattei, P., and J.L. Rombeau. 2006. Review of the pathophysiology and management of postoperative ileus. World Journal of Surgery 30 (8): 1382–1391.

    Article  PubMed  Google Scholar 

  7. Schwarz, N.T., et al. 2001. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121 (6): 1354–1371.

    Article  CAS  PubMed  Google Scholar 

  8. Turler, A., et al. 2006. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Annals of Surgery 244 (2): 220–229.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tajima, T., et al. 2012. EP2 and EP4 receptors on muscularis resident macrophages mediate LPS-induced intestinal dysmotility via iNOS upregulation through cAMP/ERK signals. American Journal of Physiology. Gastrointestinal and Liver Physiology 302 (5): G524–G534.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, Y.R., et al. 2006. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. European Journal of Pharmacology 537 (1–3): 64–69.

    Article  CAS  PubMed  Google Scholar 

  11. Hoi, C.P., et al. 2010. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy Research 24 (10): 1538–1542.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Z., et al. 2013. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Research 1491: 204–212.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y.S., et al. 2010. Synthesis and microbiological evaluation of honokiol derivatives as new antimicrobial agents. Archives of Pharmacal Research 33 (1): 61–65.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S.Y., et al. 2015. Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. BioMed Research International 2015: 283630.

    PubMed  PubMed Central  Google Scholar 

  15. Xu, Q., et al. 2008. Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Progress in Neuro-Psychopharmacology & Biological Psychiatry 32 (3): 715–725.

    Article  CAS  Google Scholar 

  16. Fried, L.E., and J.L. Arbiser. 2009. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & Redox Signaling 11 (5): 1139–1148.

    Article  CAS  Google Scholar 

  17. Pillai, V.B., et al. 2015. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications 6: 6656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mochiki, E., et al. 2010. The effect of traditional Japanese medicine (Kampo) on gastrointestinal function. Surgery Today 40 (12): 1105–1111.

    Article  PubMed  Google Scholar 

  19. Tsuchida, Y., et al. 2011. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60 (5): 638–647.

    Article  CAS  PubMed  Google Scholar 

  20. Endo, M., et al. 2014. Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. Journal of Gastroenterology 49 (6): 1026–1039.

    Article  PubMed  Google Scholar 

  21. Oikawa, T., et al. 2005. Prokinetic effect of a Kampo medicine, Hange-koboku-to (Banxia-houpo-tang), on patients with functional dyspepsia. Phytomedicine 12 (10): 730–734.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, C.B., J.N. Ver Hoeve, and T.M. Nork. 2012. The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Documenta Ophthalmologica 124 (1): 59–72.

    Article  PubMed  Google Scholar 

  23. Kiyosue, M., et al. 2006. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterology and Motility 18 (11): 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  24. Qu, W.M., et al. 2012. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice. British Journal of Pharmacology 167 (3): 587–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, T., et al. 2015. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget 6 (25): 21268–21282.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hori, M., et al. 2001. Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (5): G930–G938.

    CAS  PubMed  Google Scholar 

  27. Uchida, M., N. Endo, and K. Shimizu. 2005. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. Journal of Pharmacological Sciences 98 (4): 388–395.

    Article  CAS  PubMed  Google Scholar 

  28. Kinoshita, K., et al. 2007. Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochemistry and Cell Biology 127 (1): 41–53.

    Article  CAS  PubMed  Google Scholar 

  29. Kanda, Y. 2013. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantation 48 (3): 452–458.

    Article  CAS  PubMed  Google Scholar 

  30. Hori, M., et al. 2008. MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. American Journal of Physiology. Cell Physiology 294 (2): C391–C401.

    Article  CAS  PubMed  Google Scholar 

  31. Endo, M., et al. 2007. Pharmacological analysis for the optimal combination ratio of Shakuyaku and Kanzo in Shakuyakukanzoto. Journal of Traditional Medicines 24 (1): 39–42.

    Google Scholar 

  32. Ghayur, M.N., and A.H. Gilani. 2005. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Digestive Diseases and Sciences 50 (10): 1889–1897.

    Article  PubMed  Google Scholar 

  33. Maehara, T., et al. 2015. Therapeutic action of 5-HT3 receptor antagonists targeting peritoneal macrophages in post-operative ileus. British Journal of Pharmacology 172 (4): 1136–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olsen, R.W., and W. Sieghart. 2009. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56 (1): 141–148.

    Article  CAS  PubMed  Google Scholar 

  35. Alexeev, M., et al. 2012. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 62 (8): 2507–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reyes-Garcia, M.G., et al. 2007. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. Journal of Neuroimmunology 188 (1–2): 64–68.

    Article  CAS  PubMed  Google Scholar 

  37. Bjurstom, H., et al. 2008. GABA, a natural immunomodulator of T lymphocytes. Journal of Neuroimmunology 205 (1–2): 44–50.

    Article  PubMed  Google Scholar 

  38. Bhat, R., et al. 2010. Inhibitory role for GABA in autoimmune inflammation. Proceedings of the National Academy of Sciences of the United States of America 107 (6): 2580–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hernandez-Rabaza, V. et al. 2016. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 13(1): p. 83.

  40. Oh, J.H., et al. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, compound isolated from Magnolia officinalis through inhibition of NF-kappaB [corrected]. Chemico-Biological Interactions 180 (3): 506–514.

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs, A., et al. 2014. Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABA(A) receptors. Bioorganic & Medicinal Chemistry 22 (24): 6908–6917.

    Article  CAS  Google Scholar 

  42. Tse, A.K., et al. 2005. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochemical Pharmacology 70 (10): 1443–1457.

    Article  CAS  PubMed  Google Scholar 

  43. Leeman-Neill, R.J., et al. 2010. Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clinical Cancer Research 16 (9): 2571–2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajendran, P., et al. 2012. Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. Journal of Cellular Physiology 227 (5): 2184–2195.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, P.J., et al. 2016. Honokiol suppresses TNF-alpha-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IkappaBalpha. Scientific Reports 6: 26554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, F.F., et al. 2015. Mitochondrial energy metabolism disorder and apoptosis: a potential mechanism of postoperative ileus. International Journal of Clinical and Experimental Medicine 8 (9): 14885–14895.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Japan (MH: 24248050 and HO: 25221205).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions

MH and TM conceived and designed the experiments. TM performed all of the experiments. TM and MH wrote the manuscript. SM, NK, ME, TO, HO, Jan TR, and MH reviewed and discussed the data.

Corresponding author

Correspondence to Masatoshi Hori.

Ethics declarations

All animal experiments were performed according to the Guide for Animal Use and Care published by the University of Tokyo and were approved by the Institutional Review Board of the University of Tokyo (approval code P10-482).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihara, T., Mikawa, S., Kaji, N. et al. Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression. Inflammation 40, 1331–1341 (2017). https://doi.org/10.1007/s10753-017-0576-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0576-7

KEY WORDS

Navigation