Skip to main content

Advertisement

Log in

In vitro and in vivo toxicity of 5-FdU-alendronate, a novel cytotoxic bone-seeking duplex drug against bone metastasis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background Bone remains one of the most common anatomic sites for cancer metastases, and the limited therapeutic options aggravate cancer-related morbidity and mortality in multiple malignancies. The covalent conjugation of the amino-bisphosphonate alendronate (ale) with the antimetabolite 5-fluoro-2′-desoxyuridine (5-FdU) results in N4-(butyl-(4-hydroxy-4-phosphono)phosphate)-5-fluoro-2′-desoxyuridine (5-FdU-alendronat, 5-FdU-ale), an effective, novel bone-targeting duplex drug directed against skeletal cancer manifestations. Methods In vitro cytotoxicity of ale, 5-FdU or 5-FdU-ale was measured with Alamar Blue and MUH cell viability assays in 14 malignant melanoma, multiple myeloma, bone marrow-derived stromal cell and osteoblast-like cell lines. In vivo toxicity was evaluated using the chicken embryo assay and evaluation of nephrotoxicity and the systemic toxicity in Balb/c nude mice. The effect of 5-FdU-ale on osteoclast was evaluated with Balb/c nude mice in a metastatic breast cancer mouse model. Results A cell line-specific, dose-related cytotoxicity was observed for 5-FdU-ale in all cancer cell lines tested, which was significantly less toxic than 5-FdU alone when compared to the benign osteoblasts or stromal cells. The embryotoxicity of 5-FdU-ale was significantly less than that of the parental drugs alendronate or 5-FdU. 5-FdU-ale showed no signs of unwanted side effects, weight loss or nephrotoxicity in mice. In a bone metastasis mouse model, 5-FdU-ale reduced the number of tumor-associated osteoclasts. Conclusion The coupling of an amino-bisphosphonate with an antimetabolite via an N-alkyl-bonding offers a new strategy for the preparation of amino-bisphosphonates conjugates with a cancer cell-specific, efficacious cytotoxic bone-targeting potential along with a reduced systemic toxicity. The innovative duplex drug 5-FdU-ale therefore warrants further clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stewart WR, Gelberman RH, Harrelson JM, Seigler HF (1978) Skeletal metastases of melanoma. J Bone Joint Surg Am 60(5):645–649

    CAS  PubMed  Google Scholar 

  2. Suva LJ, Washam C, Nicholas RW, Griffin RJ (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208–218. doi:10.1038/nrendo.2010.227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Theriault RL, Theriault RL (2012) Biology of bone metastases. Cancer Control : J Moffitt Cancer Cent 19(2):92–101

    Google Scholar 

  4. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425. doi:10.1038/nrc3055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sceneay J, Smyth MJ, Moller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32(3–4):449–464. doi:10.1007/s10555-013-9420-1

    Article  CAS  PubMed  Google Scholar 

  6. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13(7):511–518. doi:10.1038/nrc3536

    Article  CAS  PubMed  Google Scholar 

  7. Hillner BE, Ingle JN, Berenson JR, Janjan NA, Albain KS, Lipton A, Yee G, Biermann JS, Chlebowski RT, Pfister DG (2000) American Society of Clinical Oncology guideline on the role of bisphosphonates in breast cancer. American Society of Clinical Oncology Bisphosphonates Expert Panel. J Clin Oncol: Off J Am Soc Clin Oncol 18(6):1378–1391

    CAS  Google Scholar 

  8. Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97(3 Suppl):840–847. doi:10.1002/cncr.11128

    Article  PubMed  Google Scholar 

  9. Daubine F, Le Gall C, Gasser J, Green J, Clezardin P (2007) Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst 99(4):322–330. doi:10.1093/jnci/djk054

    Article  CAS  PubMed  Google Scholar 

  10. Hosain F, Spencer RP, Couthon HM, Sturtz GL (1996) Targeted delivery of antineoplastic agent to bone: biodistribution studies of technetium-99 m-labeled gem-bisphosphonate conjugate of methotrexate. J Nucl Med 37(1):105–107

    CAS  PubMed  Google Scholar 

  11. Wingen F, Sterz H, Blum H, Möller H, Pittermann W, Pool BL, Sinn HJ, Spring H, Schmähl D (1986) Synthesis, antitumor activity, distribution and toxicity of 4-[4-[bis(2-chloroethyl)amino]phenyl]-1-hydroxybutane-1 1-bisphosphonic acid (BAD), a new lost derivative with increased accumulation in rat osteosarcoma. J Cancer Res Clin Oncol 111(3):209–219

    Article  CAS  PubMed  Google Scholar 

  12. Fabulet O, Sturtz G (1995) Synthesis of gem-bisphosphonic doxorubicinconjugates. Phosphorus Sulfur Silicon Relat Elem 101(1–4):225–234

    Article  CAS  Google Scholar 

  13. Sturtz G, Appéré G, Breistol K, Fodstad O, Schwartsmann G, Hendriks HR (1992) A study of the delivery-targeting concept applied to antineoplasic drugs active on human osteosarcoma. I. Synthesis and biological activity in nude mice carrying human osteosarcoma xenografts of gem-bisphosphonic methotrexate analogues. Eur J Med Chem 27(8):825–833. doi:10.1016/0223-5234(92)90117-J

    Article  CAS  Google Scholar 

  14. Schott H, Goltz D, Schott TC, Jauch C, Schwendener RA (2011) N(4)-[Alkyl-(hydroxyphosphono)phosphonate]-cytidine-new drugs covalently linking antimetabolites (5-FdU, araU or AZT) with bone-targeting bisphosphonates (alendronate or pamidronate). Bioorg Med Chem 19(11):3520–3526. doi:10.1016/j.bmc.2011.04.015

    Article  CAS  PubMed  Google Scholar 

  15. Harigaya K, Handa H (1985) Generation of functional clonal cell lines from human bone marrow stroma. Proc Natl Acad Sci U S A 82(10):3477–3480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K, Sohani AR, Guimaraes A, Xie W, Chauhan D, Schoonmaker JA, Attar E, Churchill M, Weller E, Munshi N, Seehra JS, Weissleder R, Anderson KC, Scadden DT, Raje N (2010) Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci 107(11):5124–5129. doi:10.1073/pnas.0911929107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eijken M, Swagemakers S, Koedam M, Steenbergen C, Derkx P, Uitterlinden AG, van der Spek PJ, Visser JA, de Jong FH, Pols HAP, van Leeuwen JPTM (2007) The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J 21(11):2949–2960. doi:10.1096/fj.07-8080com

    Article  PubMed  Google Scholar 

  18. Schott S, Niessner H, Sinnberg T, Venturelli S, Berger A, Ikenberg K, Villanueva J, Meier F, Garbe C, Busch C (2012) Cytotoxicity of new duplex drugs linking 3′-C-ethynylcytidine and 5-fluor-2′-deoxyuridine against human melanoma cells. Int J Cancer J Int Cancer 131(9):2165–2174. doi:10.1002/ijc.27476

    Article  CAS  Google Scholar 

  19. Schott S, Wallwiener M, Kootz B, Seeger H, Fehm T, Neubauer H (2012) Cytotoxicity of the new antimetabolite-bisphosphonate (5-FdU-alendronate) in comparison to standard therapeutics on breast and ovarian cancer cell lines in the ATP tumor chemosensitivity assay. Investig New Drugs 30(4):1750–1755. doi:10.1007/s10637-011-9688-3

    Article  Google Scholar 

  20. Fechner S, Busch C, Oppitz M, Drews U, Meyer-Wittkopf M (2008) The chick embryo as a model for intrauterine ultrasound-guided heart intervention. Ultrasound Obstet Gynecol: Off J Int Soc Ultrasound Obstet Gynecol 31(3):277–283. doi:10.1002/uog.5244

    Article  CAS  Google Scholar 

  21. Schem C, Bauerschlag D, Bender S, Lorenzen AC, Loermann D, Hamann S, Rosel F, Kalthoff H, Gluer CC, Jonat W, Tiwari S (2013) Preclinical evaluation of sunitinib as a single agent in the prophylactic setting in a mouse model of bone metastases. BMC Cancer 13:32. doi:10.1186/1471-2407-13-32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Reinholz MM, Zinnen SP, Dueck AC, Dingli D, Reinholz GG, Jonart LA, Kitzmann KA, Bruzek AK, Negron V, Abdalla AK, Arendt BK, Croatt AJ, Sanchez-Perez L, Sebesta DP, Lonnberg H, Yoneda T, Nath KA, Jelinek DF, Russell SJ, Ingle JN, Spelsberg TC, Dixon HB, Karpeisky A, Lingle WL (2010) A promising approach for treatment of tumor-induced bone diseases: utilizing bisphosphonate derivatives of nucleoside antimetabolites. Bone 47(1):12–22. doi:10.1016/j.bone.2010.03.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. El-Mabhouh AA, Nation PN, Abele JT, Riauka T, Postema E, McEwan AJ, Mercer JR (2011) A conjugate of gemcitabine with bisphosphonate (Gem/BP) shows potential as a targeted bone-specific therapeutic agent in an animal model of human breast cancer bone metastases. Oncol Res 19(6):287–295

    Article  CAS  PubMed  Google Scholar 

  24. Tower RJ, Campbell GM, Muller M, Gluer CC, Tiwari S (2015) Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo. Bone 74:171–181. doi:10.1016/j.bone.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  25. Fleisch H (1991) Bisphosphonates. Pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 42(6):919–944

    Article  CAS  PubMed  Google Scholar 

  26. Weinreich J, Schott TC, Konigsrainer I, Kuper M, Konigsrainer A, Schott H (2012) Cytostatic activity of a 5-fluoro-2′-deoxyuridine-alendronate conjugate against gastric adenocarcinoma and non-malignant intestinal and fibroblast cell lines. Anticancer Res 32(10):4299–4305

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This work was supported by grants from the DFG SFB 773: “Understanding and overcoming drug resistance of solid tumors” to CB. SS received a research scholarship from the University of Heidelberg. SS and SV received a research grant from the “Stiftung für Krebs und Scharlachforschung Mannheim”. The sponsors had no involvement in the study design, the collection, analysis and interpretation of data, the writing of the manuscript or in the decision to submit the manuscript for publication.

Conflict of interest

All authors claim no conflicts of interest

Ethical standards

The Ethics Committee for Animal Experiments at the Christian-Albrechts-Universität zu Kiel, Germany (V312-72241.121-10) approved this study. Animal experiments and care were performed in accordance with the guidelines of institutional authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Schott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schott, S., Vallet, S., Tower, R.J. et al. In vitro and in vivo toxicity of 5-FdU-alendronate, a novel cytotoxic bone-seeking duplex drug against bone metastasis. Invest New Drugs 33, 816–826 (2015). https://doi.org/10.1007/s10637-015-0253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0253-3

Keywords

Navigation