Skip to main content
Log in

Pyrimidinyl-arylpropionic acid derivatives: viable resources in the development of new antineoplastic agents

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Numerous studies have documented that various naturally derived ligands or synthetic non-thiazolidinediones (TZD) as peroxisome proliferator-activated receptor gamma (PPARγ) agonists have shown moderate or potent antitumor activities, which is PPARγ independent or partially dependent. However, the PPARγ agonistic or glucose-lowering activity is ranked first more often than antitumor activity to determine promising novel PPARγ agonists for potential clinical use. In this study, we hypothesized that there might exist some compounds with less PPARγ agonistic activity but potent antitumor activity. Thereafter, we evaluated the PPARγ agonistic and antitumor activity of a novel series of α-aryloxy-α-methylhydrocinnamic acid derivatives synthesized with the initial aim of developing novel PPARγ agonists as hypoglycemic agents. MTT assay results revealed that several compounds were able to inhibit cell proliferation in a dose-dependent manner with IC50 12.7–29.7 μM, better than that of rosiglitazone (45.9–141 μM), although the PPARγ agonistic activity of most compounds is much lower than rosiglitazone. Some compounds induced cell cycle arrest and apoptosis tested by Flow Cytometry. Oral administration of DH9 (100 mg/kg/d) for 21 days to BALB/c nude mice bearing xenografts including MGC-803, NCI-H460, HT-29 and OS-RC-2 cells significantly retarded tumor growth. DG8 and DJ5 showed benefits in some of the above four xenografts. Our findings demonstrate that these compounds have potent antitumor activity in vitro and in vivo and pyrimidinyl-arylpropionic acid derivatives might be viable resources in the development of new antineoplastic agents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  2. Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367

    Article  CAS  PubMed  Google Scholar 

  3. Lin MS, Chen WC, Bai X, Wang YD (2007) Activation of peroxisome proliferator-activated receptor gamma inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer. J Dig Dis 8:82–88

    Article  CAS  PubMed  Google Scholar 

  4. Xiong X, Ye Y, Fu L, Dai B, Liu J, Jia J, Tang J, Li L, Wang L, Shen J, Mei C (2008) Antitumor activity of a novel series of alpha-aryloxy-alpha-methylhydrocinnamic acid derivatives as PPAR gamma agonists against a panel of human cancer cell lines. Invest New Drugs 27(3):223–232

    Article  PubMed  Google Scholar 

  5. Guo YT, Leng XS, Li T, Zhao JM, Lin XH (2004) Peroxisome proliferator-activated receptor gamma ligands suppress liver carcinogenesis induced by diethylnitrosamine in rats. World J Gastroenterol 10:3419–3423

    CAS  PubMed  Google Scholar 

  6. Borbath I, Leclercq I, Moulin P, Sempoux C, Horsmans Y (2007) The PPARgamma agonist pioglitazone inhibits early neoplastic occurrence in the rat liver. Eur J Cancer 43:1755–1763

    Article  CAS  PubMed  Google Scholar 

  7. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP (1998) Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 58:3344–3352

    CAS  PubMed  Google Scholar 

  8. Kebebew E, Peng M, Reiff E, Treseler P, Woeber KA, Clark OH, Greenspan FS, Lindsay S, Duh QY, Morita E (2006) A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery 140:960–966

    Article  PubMed  Google Scholar 

  9. Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429

    Article  CAS  PubMed  Google Scholar 

  10. Vogt T, Hafner C, Bross K, Bataille F, Jauch KW, Berand A, Landthaler M, Andreesen R, Reichle A (2003) Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98:2251–2256

    Article  CAS  PubMed  Google Scholar 

  11. Choi IK, Kim YH, Kim JS, Seo JH (2008) PPAR-gamma ligand promotes the growth of APC-mutated HT-29 human colon cancer cells in vitro and in vivo. Invest New Drugs 26:283–288

    Article  CAS  PubMed  Google Scholar 

  12. Smith MR, Kantoff PW (2002) Peroxisome proliferator-activated receptor gamma (PPargamma) as a novel target for prostate cancer. Invest New Drugs 20:195–200

    Article  CAS  PubMed  Google Scholar 

  13. Diamond GA, Kaul S (2007) Rosiglitazone and cardiovascular risk. N Engl J Med 357:938–939

    CAS  PubMed  Google Scholar 

  14. Nathan DM (2007) Rosiglitazone and cardiotoxicity-weighing the evidence. N Engl J Med 357:64–66

    Article  CAS  PubMed  Google Scholar 

  15. Psaty BM, Furberg CD (2007) The record on rosiglitazone and the risk of myocardial infarction. N Engl J Med 357:67–69

    Article  CAS  PubMed  Google Scholar 

  16. Devasthale PV, Chen S, Jeon Y, Qu F, Shao C, Wang W et al (2005) Design and synthesis of N-[(4-methoxyphenoxy)carbonyl]-N-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine [Muraglitazar/BMS-298585], a novel peroxisome proliferator-activated receptor alpha/gamma dual agonist with efficacious glucose and lipid-lowering activities. J Med Chem 48:2248–2250

    Article  CAS  PubMed  Google Scholar 

  17. Ahn JH, Shin MS, Jung SH, Kang SK, Kim KR, Rhee SD et al (2006) Indenone derivatives: a novel template for peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. J Med Chem 49:4781–4784

    Article  CAS  PubMed  Google Scholar 

  18. Kim KR, Lee JH, Kim SJ, Rhee SD, Jung WH, Yang SD et al (2006) KR-62980: a novel peroxisome proliferator-activated receptor gamma agonist with weak adipogenic effects. Biochem Pharmacol 72:446–454

    Article  CAS  PubMed  Google Scholar 

  19. Ray DM, Akbiyik F, Phipps RP (2006) The peroxisome proliferator-activated receptor gamma (PPARgamma) ligands 15-deoxy-Delta12, 14-prostaglandin J2 and ciglitazone induce human B lymphocyte and B cell lymphoma apoptosis by PPARgamma-independent mechanisms. J Immunol 177:5068–5076

    CAS  PubMed  Google Scholar 

  20. Papineni S, Chintharlapalli S, Safe S (2008) Methyl 2-Cyano-3, 11-dioxo-18beta-olean-1, 12-dien-30-oate is a peroxisome proliferator-activated receptor-gamma agonist that induces receptor-independent apoptosis in LNCaP prostate cancer cells. Mol Pharmacol 73:553–565

    Article  CAS  PubMed  Google Scholar 

  21. Chintharlapalli S, Papineni S, Safe S (2007) 1, 1-bis(3′-indolyl)-1-(p-substitutedphenyl)methanes inhibit growth, induce apoptosis, and decrease the androgen receptor in LNCaP prostate cancer cells through peroxisome proliferator-activated receptor gamma-independent pathways. Mol Pharmacol 71:558–569

    Article  CAS  PubMed  Google Scholar 

  22. Ray DM, Morse KM, Hilchey SP, Garcia TM, Felgar RE, Maggirwar SB et al (2006) The novel triterpenoid 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO) induces apoptosis of human diffuse large B-cell lymphoma cells through a peroxisome proliferator-activated receptor gamma-independent pathway. Exp Hematol 34:1202–1211

    Article  CAS  PubMed  Google Scholar 

  23. Han S, Zheng Y, Roman J (2007) Rosiglitazone, an Agonist of PPARgamma, Inhibits Non-Small Cell Carcinoma Cell Proliferation In Part through Activation of Tumor Sclerosis Complex-2. PPAR Res 2007:29632

    PubMed  Google Scholar 

  24. Rau O, Syha Y, Zettl H, Kock M, Bock A, Schubert-Zsilavecz M (2008) Alpha-Alkyl substituted pirinixic acid derivatives as potent dual agonists of the peroxisome proliferator activated receptor alpha and gamma. Arch Pharm (Weinheim) 341:191–195

    Article  CAS  Google Scholar 

  25. Kusunoki N, Yamazaki R, Kitasato H, Beppu M, Aoki H, Kawai S (2004) Triptolide, an active compound identified in a traditional Chinese herb, induces apoptosis of rheumatoid synovial fibroblasts. BMC Pharmacol 4:2

    Article  PubMed  Google Scholar 

  26. Aoki T, Asaki T, Hamamoto T, Sugiyama Y, Ohmachi S, Kuwabara K et al (2008) Discovery of a novel class of 1, 3-dioxane-2-carboxylic acid derivatives as subtype-selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonists. Bioorg Med Chem Lett 18:2128–2132

    Article  CAS  PubMed  Google Scholar 

  27. Asaki T, Aoki T, Hamamoto T, Sugiyama Y, Ohmachi S, Kuwabara K et al (2008) Structure-activity studies on 1, 3-dioxane-2-carboxylic acid derivatives, a novel class of subtype-selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonists. Bioorg Med Chem 16:981–994

    Article  CAS  PubMed  Google Scholar 

  28. Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF et al (2008) Effects of modifications of the linker in a series of phenylpropanoic acid derivatives: Synthesis, evaluation as PPARalpha/gamma dual agonists, and X-ray crystallographic studies. Bioorg Med Chem 16:4883–4907

    Article  CAS  PubMed  Google Scholar 

  29. Reddy RC, Keshamouni VG, Jaigirdar SH, Zeng X, Leff T, Thannickal VJ et al (2004) Deactivation of murine alveolar macrophages by peroxisome proliferator-activated receptor-gamma ligands. Am J Physiol Lung Cell Mol Physiol 286:L613–L619

    Article  CAS  PubMed  Google Scholar 

  30. Chou FS, Wang PS, Kulp S, Pinzone JJ (2007) Effects of thiazolidinediones on differentiation, proliferation, and apoptosis. Mol Cancer Res 5:523–530

    Article  CAS  PubMed  Google Scholar 

  31. Han S, Roman J (2007) Peroxisome proliferator-activated receptor gamma: a novel target for cancer therapeutics? Anticancer Drugs 18:237–244

    Article  CAS  PubMed  Google Scholar 

  32. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National 863 Plan in High Technology Progress (2002AA2Z3130, 2007AA02Z3Z1), and Shanghai Leading Academic Discipline Project (Project Number: B902). We thank members of the Shanghai Institute of Materia Medica, Chinese Academy of Sciences for design and synthesis of the novel compounds. We thank Dr Huimin Hu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Shen or Changlin Mei.

Additional information

Xishan Xiong and Li Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Wang, L., Ye, Y. et al. Pyrimidinyl-arylpropionic acid derivatives: viable resources in the development of new antineoplastic agents. Invest New Drugs 28, 472–481 (2010). https://doi.org/10.1007/s10637-009-9278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9278-9

Keywords

Navigation