Skip to main content
Log in

Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury

  • Invited Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Of the numerous gaseous substances that can act as signaling molecules, the best characterized are nitric oxide, carbon monoxide and hydrogen sulfide. Contributions of each of these low molecular weight substances, alone or in combination, to maintenance of gastrointestinal mucosal integrity have been established. There is considerable overlap in the actions of these gases in modulating mucosal defense and responses to injury, and in some instances they act in a cooperative manner. Each also play important roles in regulating inflammatory and repair processes throughout the gastrointestinal tract. In recent years, significant progress has been made in the development of novel anti-inflammatory and cytoprotective drugs that exploit the beneficial activities of one or more of these gaseous mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev. 2008;88:1547–1565.

    Article  CAS  PubMed  Google Scholar 

  2. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–142.

    CAS  PubMed  Google Scholar 

  3. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–1071.

    CAS  PubMed  Google Scholar 

  4. Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011;41:113–121.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 2001;20:6008–6016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov. 2015;14:329–345.

    Article  CAS  PubMed  Google Scholar 

  7. Olson KR, Straub KD. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology. 2016;31:60–72.

    Article  CAS  PubMed  Google Scholar 

  8. Goubern M, Andriamihaja M, Nübel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007;21:1699–1706.

    Article  CAS  PubMed  Google Scholar 

  9. Mimoun S, Andriamihaja M, Chaumontet C, et al. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid Redox Signal. 2012;17:1–10.

    Article  CAS  PubMed  Google Scholar 

  10. Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol. 2017;312:C302–C313.

    Article  PubMed  Google Scholar 

  11. Chang M, Xue J, Sharma V, Habtezion A. Protective role of hemeoxygenase-1 in gastrointestinal diseases. Cell Mol Life Sci. 2015;72:1161–1173.

    Article  CAS  PubMed  Google Scholar 

  12. Gibbons SJ, Verhurst PJ, Bharucha A, Farrugia G. Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Aliment Pharmacol Ther. 2013;38:689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147:303–313.

    Article  Google Scholar 

  14. Yoda Y, Amagase K, Kato S, et al. Prevention by lansoprazole, a proton pump inhibitor, of indomethacin-induced small intestinal ulceration in rats through induction of heme oxygenase-1. J Physiol Pharmacol. 2010;61:287–294.

    CAS  PubMed  Google Scholar 

  15. Brown JF, Hanson PJ, Whittle BJ. Nitric oxide donors increase mucus gel thickness in rat stomach. Eur J Pharmacol. 1992;223:103–104.

    Article  CAS  PubMed  Google Scholar 

  16. Price KJ, Hanson PJ, Whittle BJR. Stimulation by carbachol of mucus gel thickness in rat stomach involves nitric oxide. Eur J Pharmacol. 1994;263:199–202.

    Article  CAS  PubMed  Google Scholar 

  17. Lucetti LT, Silva RO, Santana AP, et al. Nitric oxide and hydrogen sulfide interact when modulating gastric physiological functions in rodents. Dig Dis Sci. 2017;62:93–104.

    Article  CAS  PubMed  Google Scholar 

  18. Costa NR, Silva RO, Nicolau LA, et al. Role of soluble guanylate cyclase activation in the gastroprotective effect of the HO-1/CO pathway against alendronate-induced gastric damage in rats. Eur J Pharmacol. 2013;700:51–59.

    Article  CAS  PubMed  Google Scholar 

  19. Motta JP, Flannigan KL, Agbor TA, et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis. 2015;21:1006–1017.

    Article  PubMed  Google Scholar 

  20. Perdue MH, McKay DM. Integrative immunophysiology in the intestinal mucosa. Am J Physiol. 1994;267:G151–G165.

    CAS  PubMed  Google Scholar 

  21. MacNaughton WK. Nitric oxide-donating compounds stimulate electrolyte transport in the guinea pig intestine in vitro. Life Sci. 1993;53:585–593.

    Article  CAS  PubMed  Google Scholar 

  22. Tamai H, Gaginella TS. Direct evidence for nitric oxide stimulation of electrolyte secretion in the rat colon. Free Radic Res. 1993;19:229–239.

    Article  CAS  Google Scholar 

  23. Asfaha S, MacNaughton WK, Appleyard CB, Chadee K, Wallace JL. Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2001;281:G635–G644.

    CAS  PubMed  Google Scholar 

  24. Asfaha S, Bell CJ, Wallace JL, MacNaughton WK. Prolonged colonic epithelial hyperresponsiveness after colitis: role of inducible nitric oxide synthase. Am J Physiol. 1999;276:G703–G710.

    CAS  PubMed  Google Scholar 

  25. Takeuchi K, Aihara E, Kimura M, Dogishi K, Hara T, Hayashi S. Gas mediators involved in modulating duodenal HCO3 secretion. Curr Med Chem. 2012;19:43–54.

    Article  CAS  PubMed  Google Scholar 

  26. Takasuka H, Hayashi S, Koyama M, et al. Carbon monoxide involved in modulating HCO -3 secretion in rat duodenum. J Pharmacol Exp Ther. 2011;337:293–300.

    Article  CAS  PubMed  Google Scholar 

  27. Takeuchi K, Kita K, Hayashi S, Aihara E. Regulatory mechanism of duodenal bicarbonate secretion: roles of endogenous prostaglandins and nitric oxide. Pharmacol Ther. 2011;130:59–70.

    Article  CAS  PubMed  Google Scholar 

  28. Blackler R, Syer S, Bolla M, Ongini E, Wallace JL. Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS ONE. 2012;7:e35196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mard SA, Askari H, Neisi N, Veisi A. Antisecretory effect of hydrogen sulfide on gastric acid secretion and the involvement of nitric oxide. Biomed Res Int. 2014;2014:480921.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Verdu E, Viani F, Armstrong D, et al. Effect of omeprazole on intragastric bacterial counts, nitrates, nitrites, and N-nitroso compounds. Gut. 1994;35:455–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;24:1–8.

    Article  Google Scholar 

  32. Keszthelyi D, Jansen SV, Schouten GA, et al. Proton pump inhibitor use is associated with an increased risk for microscopic colitis: a case-control study. Aliment Pharmacol Ther. 2010;32:1124–1128.

    Article  CAS  PubMed  Google Scholar 

  33. Shah R, Richardson P, Yu H, Kramer J, Hou JK. Gastric acid suppression is associated with an increased risk of adverse outcomes in inflammatory bowel disease. Digestion. 2017;95:188–193.

    Article  CAS  PubMed  Google Scholar 

  34. Fujimori S. What are the effects of proton pump inhibitors on the small intestine? World J Gastroenterol. 2015;21:6817–6819.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wallace JL, Syer S, Denou E, et al. Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology. 2011;141:1314–1322.

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe T, Tanigawa T, Nadatani Y, et al. Risk factors for severe nonsteroidal anti-inflammatory drug-induced small intestinal damage. Dig Liver Dis. 2013;45:390–395.

    Article  CAS  PubMed  Google Scholar 

  37. Washio E, Esaki M, Maehata Y, et al. Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: a randomized placebo-controlled trial. Clin Gastroenterol Hepatol. 2016;14:809–815.

    Article  CAS  PubMed  Google Scholar 

  38. Nuki Y, Umeno J, Washio E, et al. The influence of CYP2C19 polymorphisms on exacerbating effect of rabeprazole in celecoxib-induced small bowel injury. Aliment Pharmacol Ther. 2017. doi:10.1111/apt.14134.

    PubMed  Google Scholar 

  39. Blackler RW, De Palma G, Manko A, et al. Deciphering the pathogenesis of NSAID enteropathy using proton pump inhibitors and a hydrogen sulfide-releasing NSAID. Am J Physiol Gastrointest Liver Physiol. 2015;308:G994–G1003.

    Article  CAS  PubMed  Google Scholar 

  40. Blackler RW, Motta JP, Manko A, et al. Hydrogen sulphide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br J Pharmacol. 2015;172:992–1004.

    Article  CAS  PubMed  Google Scholar 

  41. Kidder GW. Carbon monoxide insensitivity of gastric acid secretion. Am J Physiol. 1980;238:G197–G202.

    CAS  PubMed  Google Scholar 

  42. Pique JM, Esplugues JV, Whittle BJ. Endogenous nitric oxide as a mediator of gastric mucosal vasodilatation during acid secretion. Gastroenterology. 1992;102:168–174.

    Article  CAS  PubMed  Google Scholar 

  43. Holzer P, Sametz W. Gastric mucosal protection against ulcerogenicfactors in the rat mediated by capsaicin-sensitive afferent neurons. Gastroenterology. 1986;91:975–981.

    Article  CAS  PubMed  Google Scholar 

  44. Holzer P. Neural emergency system in the stomach. Gastroenterology. 1998;114:823–839.

    Article  CAS  PubMed  Google Scholar 

  45. Lippe IT, Holzer P. Participation of endothelium-derived nitric oxide but not prostacyclin in the gastric mucosal hyperaemia due to acid back-diffusion. Br J Pharmacol. 1992;105:708–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fiorucci S, Antonelli T, Distrutti E, et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory non-steroidal drugs. Gastroenterology. 2005;129:1210–1224.

    Article  CAS  PubMed  Google Scholar 

  47. Magierowska K, Magierowski M, Hubalewska-Mazgaj M, et al. Carbon monoxide (CO) released from tricarbonyldichlororuthenium (II) dimer (CORM-2) in gastroprotection against experimental ethanol-induced gastric damage. PLoS One. 2015;10:e0140493.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Interaction between endogenous carbon monoxide and hydrogen sulfide in the mechanism of gastroprotection against acute aspirin-induced gastric damage. Pharmacol Res. 2016;114:235–250.

    Article  CAS  PubMed  Google Scholar 

  49. Banick PD, Chen QP, Xu YA, Thom SR. Nitric oxide inhibits neutrophil b2 integrin function by inhibiting membrane-associated cyclic GMP synthesis. J Cell Physiol. 1997;172:12–24.

    Article  CAS  PubMed  Google Scholar 

  50. Davenpeck KL, Gauthier TW, Lefer AM. Inhibition of endothelial derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology. 1994;107:1050–1058.

    Article  CAS  PubMed  Google Scholar 

  51. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991;88:4651–4655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wallace JL, Vergnolle N, Muscara MN, et al. Enhanced anti-inflammatory effects of a nitric oxide-releasing derivative of mesalamine in rats. Gastroenterology. 1999;117:557–566.

    Article  CAS  PubMed  Google Scholar 

  53. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006;20:2118–2120.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol. 2010;159:1236–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Urquhart P, Rosignoli G, Cooper D, Motterlini R, Perretti M. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J Pharmacol Exp Ther. 2007;321:656–662.

    Article  CAS  PubMed  Google Scholar 

  56. Paul G, Bataille F, Obermeier F, et al. Analysis of intestinal haem-oxygenase-1 (HO-1) in clinical and experimental colitis. Clin Exp Immunol. 2005;140:547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tepperman BL, Soper BD. Nitric oxide synthase induction and cytoprotection of rat gastric mucosa from injury by ethanol. Can J Physiol Pharmacol. 1994;72:1308–1312.

    Article  CAS  PubMed  Google Scholar 

  58. Motterlini R, Foresti R, Intaglietta M, Winslow RM. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am J Physiol. 1996;270:H107–H114.

    CAS  PubMed  Google Scholar 

  59. Lohmander LS, McKeith D, Svensson O, et al. Ramos-Remus C; STAR Multinational Study Group. A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis. Ann Rheum Dis. 2005;64:449–456.

    Article  CAS  PubMed  Google Scholar 

  60. Wallace JL. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid Redox Signal. 2010;12:1125–1133.

    Article  CAS  PubMed  Google Scholar 

  61. Wallace JL, Vaughan D, Dicay M, MacNaughton WK, de Nucci G. Hydrogen sulfide-releasing therapeutics: Translation to the clinic. Antiox Redox Signal 2017; in press (doi: 10.1089/ars.2017.7068).

  62. Uc A, Zhu X, Wagner BA, Guettner GR, Berg DJ. Heme oxygenase-1 is protective against nonsteroidal anti-inflammatory drug-induced gastric ulcers. J Ped Gastroenterol Nutr. 2012;54:471–476.

    Article  CAS  Google Scholar 

  63. Cheng Y-T, Wu C-H, Ho C-Y, Yen G-C. Catechin protects against ketoprofen-induced oxidative damage of the gastric mucosa by up-regulating Nrf2 in vitro and in vivo. J Nutr Biochem. 2013;24:475–483.

    Article  CAS  PubMed  Google Scholar 

  64. De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA. Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut. 2009;58:347–356.

    Article  PubMed  Google Scholar 

  65. Konturek SJ, Brzozowski T, Majka J, Pytko-Polonczyk J, Stachura J. Inhibition of nitric oxide synthase delays healing of chronic gastric ulcers. Eur J Pharmacol. 1993;239:215–217.

    Article  CAS  PubMed  Google Scholar 

  66. Elliott SN, McKnight W, Cirino G, Wallace JL. A nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology. 1995;109:524–530.

    Article  CAS  PubMed  Google Scholar 

  67. Wallace JL, Dicay M, McKnight W, Martin GR. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 2007;21:4070–4076.

    Article  CAS  PubMed  Google Scholar 

  68. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology. 2009;137:569–578.

    Article  CAS  PubMed  Google Scholar 

  69. Flannigan KL, Ferraz JGP, Wang R, Wallace JL. Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: A site-specific, pro-resolution mechanism. PLoS One. 2013;8:e71962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takagi T, Naito Y, Uchiyama K, et al. Carbon monoxide promotes gastric wound healing in mice via the protein kinase C pathway. Free Radic Res. 2016;50:1098–1105.

    Article  CAS  PubMed  Google Scholar 

  71. Schaffer MR, Tantry U, Gross SS, Wasserkrug HL, Barbul A. Nitric oxide regulates wound healing. J Surg Res. 1996;63:237–240.

    Article  CAS  PubMed  Google Scholar 

  72. Hirose H, Takeuchi K, Okabe S. Effect of indomethacin on gastric mucosal blood flow around acetic acid–induced gastric ulcers in rats. Gastroenterology. 1991;100:1259–1265.

    Article  CAS  PubMed  Google Scholar 

  73. Papapetropoulos A, Foresti R, Ferdiandy P. Pharmacology of the ‘gasotransmitters’ NO, CO and H2S: translational opportunities. Br J Pharmacol. 2015;172:1395–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Flannigan KL, Agbor TA, Blackler RW, et al. Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc Natl Acad Sci USA. 2014;111:13559–13564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lagoutte E, Mimoun S, Andriamihaja M, et al. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta. 2010;1797:1500–1511.

    Article  CAS  PubMed  Google Scholar 

  76. Shen X, Carlström M, Borniquel S, Jädert C, Kevil CG, Lundberg JO. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med. 2013;60:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Flannigan KL, McCoy KD, Wallace JL. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G188–G193.

    Article  CAS  PubMed  Google Scholar 

  78. Lund JN, Scholefield JH. Glyceryl trinitrate is an effective treatment for anal fissure. Dis Colon Rectum. 1997;40:468–470.

    Article  CAS  PubMed  Google Scholar 

  79. Hogaboam CM, Jacobson K, Collins SM, Blennerhassett MG. The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Physiol. 1995;268:G673–G684.

    CAS  PubMed  Google Scholar 

  80. Aiko S, Fuseler J, Grisham MB. Effects of nitric oxide synthase inhibition or sulfasalazine on the spontaneous colitis observed in HLA-B27 transgenic rats. J Pharmacol Exp Ther. 1998;284:722–727.

    CAS  PubMed  Google Scholar 

  81. Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther. 2016;7:353–360.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McCafferty DM, Mudgett JS, Swain MG, Kubes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology. 1997;112:1022–1027.

    Article  CAS  PubMed  Google Scholar 

  83. Takagi T, Naito Y, Uchiyama K, et al. Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2011;56:1663–1671.

    Article  CAS  PubMed  Google Scholar 

  84. Uddin MJ, Jeong SO, Zheng M, et al. Carbon monoxide attenuates dextran sulfate sodium-induced colitis via inhibition of GSK-3ß signaling. Oxid Med Cell Longev. 2013;2013:210563.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Megias J, Busserolles J, Alcaraz MJ. The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol. 2007;150:977–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Onyiah JC, Sheikh SZ, Maharshak N, Otterbein LE, Plevy SE. Heme oxygenase-1 and carbon monoxide regulate intestinal homeostasis and mucosal immune responses to the enteric microbiota. Gut Microbes. 2014;5:220–224.

    Article  PubMed  Google Scholar 

  87. Szczesny B, Módis K, Yanagi K, et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide. 2014;41:120–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shibuya N, Koike S, Tanaka M, et al. A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat Commun. 2013;4:1366.

    Article  PubMed  Google Scholar 

  89. Wallace JL, Blackler RW, Chan MV, et al. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antiox Redox Signal. 2015;22:398–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Wallace’s research is supported by a grant from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Wallace.

Ethics declarations

Conflict of interest

Dr. Wallace is the founder and Chief Scientific Officer of Antibe Therapeutics Inc., which is developing hydrogen sulfide-releasing drugs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, J.L., Ianaro, A. & de Nucci, G. Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig Dis Sci 62, 2223–2230 (2017). https://doi.org/10.1007/s10620-017-4681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4681-0

Keywords

Navigation