Skip to main content

Advertisement

Log in

Siglec-7 as a Novel Biomarker to Predict Mortality in Decompensated Cirrhosis and Acute Kidney Injury

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Patients with decompensated cirrhosis have high morbidity and are commonly hospitalized with acute kidney injury.

Aims

We examined serum levels of Siglec-7, a transmembrane receptor that regulates immune activity, as a biomarker for mortality in patients with cirrhosis and acute kidney injury.

Methods

Serum Siglec-7 was measured in hospitalized patients with cirrhosis and acute kidney injury, as well as in reference groups with acute liver injury/acute kidney injury, cirrhosis without acute kidney injury, and sepsis without liver disease. Clinical characteristics and subsequent outcomes were examined using univariate and multivariable analyses according to initial Siglec-7 levels. Primary outcome was death by 90 days.

Results

One hundred twenty-eight subjects were included, 92 of which had cirrhosis and acute kidney injury and were used in the primary analysis. Average Model for End-Stage Liver Disease (MELD) score was 24 [95 % CI 23, 26], and serum creatinine was 2.5 [2.2, 2.8] mg/dL at the time Siglec-7 was measured. After adjusting for age and MELD score, high serum Siglec-7 level predicted mortality with a hazard ratio of 1.96 [1.04, 3.69; p = 0.04]. There was no difference in Siglec-7 levels by etiology of AKI (p = 0.24). Addition of serum Siglec-7 to MELD score improved discrimination for 90-day mortality [category-free net reclassification index = 0.38 (p = 0.04); integrated discrimination increment = 0.043 (p = 0.04)].

Conclusion

Serum Siglec-7 was associated with increased mortality among hospitalized patients with cirrhosis and acute kidney injury. Addition of Siglec-7 to MELD score may increase discrimination to predict 90-day mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MELD:

Model for End-Stage Liver Disease

AKI:

Acute kidney injury

HRS:

Hepatorenal syndrome

AKIN:

Acute Kidney Injury Network

ROC:

Receiver operating characteristic

ANOVA:

Analysis of variance

NRI:

Net reclassification index

IDI:

Integrated discrimination index

APRI:

AST to platelet ratio index

References

  1. Garcia-Tsao G, Lim JK. Members of Veterans Affairs Hepatitis C Resource Center Program. Management and treatment of patients with cirrhosis and portal hypertension: recommendations from the Department of Veterans Affairs Hepatitis C Resource Center Program and the National Hepatitis C Program. Am J Gastroenterol. 2009;104:1802–1829.

    Article  PubMed  Google Scholar 

  2. Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–608.

    Article  CAS  PubMed  Google Scholar 

  3. Asrani SK, Larson JJ, Yawn B et al. Underestimation of liver-related mortality in the United States. Gastroenterology. 2013;145:375.e1-2–382.e1-2.

  4. Martin-Llahi M, Guevara M, Torre A et al. Prognostic importance of the cause of renal failure in patients with cirrhosis. Gastroenterology. 2011;140:488.e4–496.e4.

  5. Allegretti AS, Ortiz G, Cui J, et al. Changes in kidney function after transjugular intrahepatic portosystemic shunts versus large-volume paracentesis in cirrhosis: A matched cohort analysis. Am J Kidney Dis. 2016;68:381–391. doi:10.1053/j.ajkd.2016.02.041.

    Article  PubMed  Google Scholar 

  6. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology. 2008;48:2064–2077.

    Article  CAS  PubMed  Google Scholar 

  7. Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. Gut. 2013;62:131–137.

    Article  PubMed  Google Scholar 

  8. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124:91–96.

    Article  PubMed  Google Scholar 

  9. Bernardi M, Gitto S, Biselli M. The MELD score in patients awaiting liver transplant: strengths and weaknesses. J Hepatol. 2011;54:1297–1306.

    Article  PubMed  Google Scholar 

  10. Gotthardt D, Weiss KH, Baumgartner M et al. Limitations of the MELD score in predicting mortality or need for removal from waiting list in patients awaiting liver transplantation. BMC Gastroenterol. 2009;9:72,230X-9-72.

  11. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–266.

    Article  CAS  PubMed  Google Scholar 

  12. Pillai S, Netravali IA, Cariappa A, et al. Siglecs and immune regulation. Annu Rev Immunol. 2012;30:357–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicoll G, Ni J, Liu D, et al. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem. 1999;274:34089–34095.

    Article  CAS  PubMed  Google Scholar 

  14. Varchetta S, Mele D, Lombardi A et al. Lack of Siglec-7 expression identifies a dysfunctional natural killer cell subset associated with liver inflammation and fibrosis in chronic HCV infection. Gut. 2015. doi:10.1136/gutjnl-2015-310327.

  15. Miyazaki K, Sakuma K, Kawamura YI, et al. Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors siglec-7 and -9. J Immunol. 2012;188:4690–4700.

    Article  CAS  PubMed  Google Scholar 

  16. Varchetta S, Brunetta E, Roberto A, et al. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One. 2012;7:e45821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitsuki M, Nara K, Yamaji T, et al. Siglec-7 mediates nonapoptotic cell death independently of its immunoreceptor tyrosine-based inhibitory motifs in monocytic cell line U937. Glycobiology. 2010;20:395–402.

    Article  CAS  PubMed  Google Scholar 

  18. Falco M, Biassoni R, Bottino C, et al. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med. 1999;190:793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaji T, Teranishi T, Alphey MS, et al. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem. 2002;277:6324–6332.

    Article  CAS  PubMed  Google Scholar 

  20. Varki A. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology. 2011;21:1121–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delputte PL, Nauwynck HJ. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol. 2004;78:8094–8101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rempel H, Calosing C, Sun B, et al. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One. 2008;3:e1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou Z, Chastain A, Moir S, et al. Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One. 2011;6:e24559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varchetta S, Lusso P, Hudspeth K et al. Sialic acid-binding Ig-like lectin-7 interacts with HIV-1 gp120 and facilitates infection of CD4pos T cells and macrophages. Retrovirology. 2013;10:154,4690-10-154.

  25. Brunetta E, Fogli M, Varchetta S, et al. The decreased expression of Siglec-7 represents an early marker of dysfunctional natural killer-cell subsets associated with high levels of HIV-1 viremia. Blood. 2009;114:3822–3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol. 2014;10:69–75.

    Article  CAS  PubMed  Google Scholar 

  27. Jandus C, Boligan KF, Chijioke O, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124:1810–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyazaki K, Ohmori K, Izawa M, et al. Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res. 2004;64:4498–4505.

    Article  CAS  PubMed  Google Scholar 

  29. Bax M, Kuijf ML, Heikema AP, et al. Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun. 2011;79:2681–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kannagi R. Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J. 2007;30:189–209.

    PubMed  Google Scholar 

  31. Gines P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–1290.

    Article  CAS  PubMed  Google Scholar 

  32. Wadei HM, Mai ML, Ahsan N, et al. Hepatorenal syndrome: pathophysiology and management. Clin J Am Soc Nephrol. 2006;1:1066–1079.

    Article  CAS  PubMed  Google Scholar 

  33. Adebayo D, Morabito V, Davenport A, et al. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. Kidney Int. 2015;87:509–515.

    Article  PubMed  Google Scholar 

  34. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.

  35. Salerno F, Gerbes A, Gines P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007;56:1310–1318.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.

    Article  PubMed  Google Scholar 

  37. Moreau R, Jalan R, Gines P et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144:1426.e1-9–1437.e1-9.

  38. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4:627–635.

    Google Scholar 

  39. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pencina MJ, D’Agostino RB, Vasan RS. Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med. 2010;48:1703–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R Core Team. R: a language and environment for statistical computing 2015.

  42. Poynard T, Munteanu M, Luckina E, et al. Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard. J Hepatol. 2013;58:928–935.

    Article  PubMed  Google Scholar 

  43. Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. Gut. 2015;64:531–537.

    Article  CAS  PubMed  Google Scholar 

  44. Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology. 2006;130:435–452.

    Article  CAS  PubMed  Google Scholar 

  45. Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol. 2006;45:60–71.

    Article  CAS  PubMed  Google Scholar 

  46. O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009;30:240–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Silva PE, Fayad L, Lazzarotto C, et al. Single-centre validation of the EASL-CLIF consortium definition of acute-on-chronic liver failure and CLIF-SOFA for prediction of mortality in cirrhosis. Liver Int. 2015;35:1516–1523.

    Article  PubMed  Google Scholar 

  48. Lee M, Lee JH, Oh S, et al. CLIF-SOFA scoring system accurately predicts short-term mortality in acutely decompensated patients with alcoholic cirrhosis: a retrospective analysis. Liver Int. 2015;35:46–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

ASA is supported by NIH Grant 5T32DK007540-30. RTC is supported by NIH Grant K24DK078772. RIT is supported by NIH Grants R01DK094486 and K24DK094872. SAK was supported by funds from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Allegretti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegretti, A.S., Ortiz, G., Kalim, S. et al. Siglec-7 as a Novel Biomarker to Predict Mortality in Decompensated Cirrhosis and Acute Kidney Injury. Dig Dis Sci 61, 3609–3620 (2016). https://doi.org/10.1007/s10620-016-4316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4316-x

Keywords

Navigation