Skip to main content

Advertisement

Log in

IL-6/STAT3 Plays a Regulatory Role in the Interaction Between Pancreatic Stellate Cells and Cancer Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis, a characteristic feature of pancreatic cancer. Although it is still controversial, previous studies have suggested that PSCs promote the progression of pancreatic cancer by regulating the cell functions of cancer cells. PSCs produce large amounts of IL-6, which promotes the accumulation of myeloid-derived suppressor cells via a signal transducers and activator of transcription 3 (STAT3)-dependent mechanism. But the role of IL-6/STAT3 pathway in the interaction between PSCs and pancreatic cancer cells remains largely unknown.

Aims

To clarify the role of IL-6/STAT3 in the interaction between PSCs and cancer cells.

Methods

Human pancreatic cancer cells (Panc-1 and SUIT-2 cells) were treated with conditioned medium of immortalized human PSCs (PSC-CM). The effects of PSC-CM and IL-6 neutralization on the mRNA expression profiles were examined using Agilent’s microarray. Activation of STAT3 was assessed by Western blotting using an anti-phospho-specific antibody. Cellular migration was examined by a two-chamber assay. The expression of markers related to epithelial–mesenchymal transition (EMT) was assessed by real-time reverse transcription PCR.

Results

PSC-CM induced the activation of STAT3 in pancreatic cancer cells. Neutralization of IL-6 suppressed the PSC-CM-induced upregulation of genes including complement factor B, lipocalin, and chemokine (C–C motif) ligand 20. Inhibition of IL-6/STAT3 pathway by anti-IL-6 antibody or a STAT3 inhibitor (NSC74859) inhibited the PSC-CM-induced migration and the expression of EMT-related markers (Snail and cadherin-2) in pancreatic cancer cells.

Conclusion

IL-6/STAT3 pathway regulates the PSC-induced EMT and alterations in gene expression in pancreatic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CFB:

Complement factor B

CCL20:

Chemokine (C–C motif) ligand 20

CM:

Conditioned medium

DAPI:

4′,6-diamidino-2-phenylindole

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

GFAP:

Glial fibrillary acidic protein

IκB:

Inhibitor of κB

IPA:

Ingenuity Pathway Analysis

JNK:

c-Jun N-terminal kinase

LCN2:

Lipocalin

MAPK:

Mitogen-activated protein kinase

PSCs:

Pancreatic stellate cells

RT:

Reverse transcription

SMA:

Smooth muscle actin

STAT:

Signal transducers and activator of transcription

References

  1. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–1617.

    Article  CAS  PubMed  Google Scholar 

  2. Neesse A, Michl P, Frese KK, et al. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60:861–868.

    Article  PubMed  Google Scholar 

  3. Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation and culture. Gut. 1998;43:128–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erkan M, Adler G, Apte MV, et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut. 2012;61:172–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol. 2009;44:249–260.

    Article  PubMed  Google Scholar 

  6. Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210–1219.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Masamune A, Shimosegawa T. Pancreatic stellate cells-multi-functional cells in the pancreas. Pancreatology. 2013;13:102–105.

    Article  CAS  PubMed  Google Scholar 

  8. Bachem MG, Schünemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128:907–921.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008;68:918–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vonlaufen A, Joshi S, Qu C, et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 2008;68:2085–2093.

    Article  CAS  PubMed  Google Scholar 

  11. Kikuta K, Masamune A, Watanabe T, et al. Pancreatic stellate cells promote epithelial–mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403:380–384.

    Article  CAS  PubMed  Google Scholar 

  12. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–890.

    Article  CAS  PubMed  Google Scholar 

  13. Lunardi S, Jamieson NB, Lim SY, et al. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget. 2014;5:11064–11080.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mace TA, Ameen Z, Collins A, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 2013;73:3007–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamada S, Masamune A, Takikawa T, et al. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun. 2012;421:349–354.

    Article  CAS  PubMed  Google Scholar 

  16. Masamune A, Kikuta K, Watanabe T, et al. Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut. 2009;58:550–559.

    Article  CAS  PubMed  Google Scholar 

  17. Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA. 2007;104:7391–7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masamune A, Watanabe T, Kikuta K, et al. Nuclear expression of interleukin-33 in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2010;299:G821–G832.

    Article  CAS  PubMed  Google Scholar 

  19. Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal. 2014;26:179–185.

    Article  CAS  PubMed  Google Scholar 

  20. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–193.

    Article  CAS  PubMed  Google Scholar 

  21. Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32(Suppl):496–501.

    Article  CAS  PubMed  Google Scholar 

  22. Takikawa T, Masamune A, Hamada S, et al. miR-210 regulates the interaction between pancreatic cancer cells and stellate cells. Biochem Biophys Res Commun. 2013;437:433–439.

    Article  CAS  PubMed  Google Scholar 

  23. Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.

    Article  CAS  PubMed  Google Scholar 

  24. Lee MJ, Na K, Jeong SK, et al. Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma. J Proteome Res. 2014;13:4878–4888.

    Article  CAS  PubMed  Google Scholar 

  25. Klemm C, Dommisch H, Göke F, et al. Expression profiles for 14-3-3 zeta and CCL20 in pancreatic cancer and chronic pancreatitis. Pathol Res Pract. 2014;210:335–341.

    Article  CAS  PubMed  Google Scholar 

  26. Leung L, Radulovich N, Zhu CQ, et al. Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma. PLoS One. 2012;7:e46677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beigel F, Friedrich M, Probst C, et al. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLoS One. 2014;9:e93498.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brender C, Nielsen M, Kaltoft K, et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001;97:1056–1062.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Xu H, Zou X, et al. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells. Cancer Res. 2014;74:4353–4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 2006;66:11745–11753.

    Article  CAS  PubMed  Google Scholar 

  31. Wu HH, Hwang-Verslues WW, Lee WH, et al. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med. 2015;212:333–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tjomsland V, Niklasson L, Sandström P, et al. The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol. 2011;2011:212810.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ueda J, Tanaka M, Ohtsuka T, et al. Surgery for chronic pancreatitis decreases the risk for pancreatic cancer: a multicenter retrospective analysis. Surgery. 2013;153:357–364.

    Article  PubMed  Google Scholar 

  34. Fukuda A, Wang SC, Morris JP 4th, et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell. 2011;19:441–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lesina M, Kurkowski MU, Ludes K, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19:456–469.

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Li J, Li H, et al. A comprehensive analysis of candidate genes and pathways in pancreatic cancer. Tumour Biol. 2015;36:1849–1857.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Yan W, Collins MA, et al. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 2013;73:6359–6374.

    Article  CAS  PubMed  Google Scholar 

  38. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-Aid from the Japan Society for the Promotion of Science (26293171, 26461029, 15H04804), the Mitsui Life Social Welfare Foundation (to A. Masamune), and the Pancreas Research Foundation of Japan (to T. Takikawa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Masamune.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, S., Masamune, A., Yoshida, N. et al. IL-6/STAT3 Plays a Regulatory Role in the Interaction Between Pancreatic Stellate Cells and Cancer Cells. Dig Dis Sci 61, 1561–1571 (2016). https://doi.org/10.1007/s10620-015-4001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-4001-5

Keywords

Navigation