Skip to main content
Log in

Quantification of the Effects of the Volume and Viscosity of Gastric Contents on Antral and Fundic Activity in the Rat Stomach Maintained Ex Vivo

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Aims

The aim of this study was to examine the effect of varying the rheological properties of perfusate on the volume and muscular activity of the various compartments of the rat stomach.

Methods

Image analysis was used to quantify the activity of the ex vivo stomach preparations when perfused according to a ramp profile.

Results

The area of the fundus increased to a greater extent than that of the body when watery or viscous material was perfused. However, initial distension of the corpus was greater and occurred more rapidly when viscous material was perfused. Only the fundus expanded when perfusion followed the administration of verapamil. The frequency of antrocorporal contractions decreased significantly and the amplitude of antrocorporal contractions increased significantly with increase in gastric volume. The velocity of antrocorporal contractions did not vary with gastric volume but varied regionally in some preparations being faster distally than proximally. Neither the frequency, amplitude or velocity of antrocorporal contractions differed when pseudoplastic rather than watery fluid was perfused. However, the characteristics of antrocorporal contractions changed significantly when the stomach was perfused with material with rheological characteristics that induce different patterns of wall tension to those normally encountered. Hence, the mean frequency and speed of propagation of antrocorporal contractions increased and their direction of propagation became inconstant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schulze K. Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol Mot. 2006;18:172–183.

    Article  CAS  Google Scholar 

  2. Blat S, Guerin S, Chauvin A, et al. Role of vagal innervation on intragastric distribution and emptying of liquid and semisolid meals in conscious pigs. Neurogastroenterol Mot. 2001;13:73–80.

    Article  CAS  Google Scholar 

  3. Paterson CA, Anvari M, Tougas G, Huizinga JD. Determinants of occurrence and volume of transpyloric flow during gastric emptying of liquids in dogs. Dig Dis Sci. 2000;45:1509–1516.

    Article  CAS  PubMed  Google Scholar 

  4. Pal A, Indireshkumar K, Schwizer W, Abrahamsson B, Fried M, Brasseur JG. Gastric flow and mixing studied using computer simulation. Proc R Soc Lond B Biol Sci. 2004;271:2587–2594.

    Article  Google Scholar 

  5. Hausken T, Mundt M, Samsom M. Low antroduodenal pressure gradients are responsible for gastric emptying of a low-caloric liquid meal in humans. Neurogastroenterol Mot. 2002;14:97–105.

    Article  CAS  Google Scholar 

  6. Camilleri M, Malagelada JR, Brown ML, Becker G, Zinsmeister AR. Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Physiol. 1985;249:G580–G585.

    CAS  PubMed  Google Scholar 

  7. Miller J, Kauffman G, Elashoff J, Ohashi H, Carter D, Meyer JH. Search for resistances controlling canine gastric emptying of liquid meals. Am J Physiol. 1981;241:G403–G415.

    CAS  PubMed  Google Scholar 

  8. Malbert CH, Mathis C. Antropyloric modulation of transpyloric flow of liquids in pigs. Gastroenterology. 1994;107:37–46.

    CAS  PubMed  Google Scholar 

  9. Indireshkumar K, Brasseur JG, Faas H, et al. Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Physiol. 2000;278:G604–G616.

    CAS  Google Scholar 

  10. Faas H, Hebbard GS, Feinle C, et al. Pressure-geometry relationship in the antroduodenal region in humans. Am J Physiol. 2001;281:G1214–G1220.

    CAS  Google Scholar 

  11. Marciani L, Gowland PA, Fillery-Travis A, et al. Assessment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol. 2001;280:G844–G849.

    CAS  Google Scholar 

  12. Kwiatek MA, Steingoetter A, Pal A, et al. Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging. J Magn Reson Imaging. 2006;24:1101–1109.

    Article  PubMed  Google Scholar 

  13. Malbert CH, Ruckebusch Y. Relationships between pressure and flow across the gastroduodenal junction in dogs. Am J Physiol. 1991;260:G653–G657.

    CAS  PubMed  Google Scholar 

  14. Wang XY, Lammers W, Bercik P, Huizinga JD. Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol. 2005;289:G539–G549.

    CAS  Google Scholar 

  15. Maes BD, Hiele MI, Geypens BJ, Ghoos YF, Rutgeerts PJ. Gastric emptying of the liquid, solid and oil phase of a meal in normal volunteers and patients with Billroth ii gastrojejunostomy. Eur J Clin Invest. 1998;28:197–204.

    Article  CAS  PubMed  Google Scholar 

  16. Kunz P, Feinle-Bisset C, Faas H, et al. Effect of ingestion order of the fat component of a solid meal on intragastric fat distribution and gastric emptying assessed by MRI. J Magn Reson Imaging. 2005;21:383–390.

    Article  PubMed  Google Scholar 

  17. Meyer JH. The physiology of gastric motility and gastric emptying. In: Yamada T, ed. Textbook of gastroenterology, vol. 1. Philadelphia: JB Lippincott; 1991:137–157.

    Google Scholar 

  18. Hinder RA, Kelly KA. Canine gastric emptying of solids and liquids. Am J Physiol. 1977;233:G335–G340.

    Google Scholar 

  19. Marciani L, Gowland PA, Spiller RC, et al. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol. 2001;280:G1227–G1233.

    CAS  Google Scholar 

  20. Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav. 2004;82:69–74.

    Article  CAS  PubMed  Google Scholar 

  21. Sakaguchi T, Aono T, Ohtake M, Sandoh N. Interaction of glucose signals between the nucleus of the vagus nerve and the portal vein area in the regulation of gastric motility in rats. Brain Res Bull. 1994;33:469–471.

    Article  CAS  PubMed  Google Scholar 

  22. Lu Y, Owyang C. Secretin at physiological doses inhibits gastric motility via a vagal afferent pathway. Am J Physiol. 1995;268:G1012–G1016.

    CAS  PubMed  Google Scholar 

  23. Schirra J, Houck P, Wank U, Arnold R, Goke B, Katschinski M. Effects of glucagon-like peptide-1 (7–36) amide on antro-pyloro-duodenal motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut. 2000;46:622–631.

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi T, Owyang C. Mechanism of cholecystokinin-induced relaxation of the rat stomach. J Auton Nerv Syst. 1999;75:123–130.

    Article  CAS  PubMed  Google Scholar 

  25. McTigue DM, Rogers RC. Pancreatic polypeptide stimulates gastric motility through a vagal-dependent mechanism in rats. Neurosci Lett. 1995;188:93–96.

    Article  CAS  PubMed  Google Scholar 

  26. Lefebvre RA, Dick JMC, Guerin S, Malbert CH. Involvement of no in gastric emptying of semi-solid meal in conscious pigs. Neurogastroenterol Mot. 2005;17:229–235.

    Article  CAS  Google Scholar 

  27. Mundt MW, Hausken T, Samsom M. Effect of intragastric barostat bag on proximal and distal gastric accommodation in response to liquid meal. Am J Physiol. 2002;283:G681–G686.

    CAS  Google Scholar 

  28. Ropert A, des Varannes SB, Bizais Y, Rozé C, Galmiche JP. Simultaneous assessment of liquid emptying and proximal gastric tone in humans. Gastroenterology. 1993;105:667–674.

    CAS  PubMed  Google Scholar 

  29. Hennig GW, Costa M, Chen BN. Brookes SJH. Quantitative analysis of peristalsis in the guinea-pig small intestine using spatio-temporal maps. J Physiol. 1999;517.2:575–590.

    Article  Google Scholar 

  30. Gregersen H. Biomechanics of the gastrointestinal tract: New perspectives in motility research and diagnostics. New York: Springer; 2003.

    Google Scholar 

  31. Schulze-Delrieu K, Herman RJ, Shirazi SS, Brown BP. Contractions move contents by changing the configuration of the isolated cat stomach. Am J Physiol. 1998;274:G359–G369.

    CAS  PubMed  Google Scholar 

  32. Gärtner K. The forestomach of rats and mice, an effective device supporting digestive metabolism in muridae (review). J Exp Anim Sci. 2001;42:1–20.

    Article  Google Scholar 

  33. Gärtner K, Pfaff J. The forestomach in rats and mice, a food store without bacterial protein digestion. Zentralbl Veterinarmed A. 1979;26:530–541.

    Article  PubMed  Google Scholar 

  34. Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol. 2007;B177:543–556.

    Google Scholar 

  35. Lentle RG, Janssen PWM. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol. 2008;B178:673–690.

    Google Scholar 

  36. Goh KKT, Matia-Merino L, Hall CE, Moughan PJ, Singh H. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, cyathea medullaris. Biomacromolecules. 2007;8:3414–3421.

    Article  CAS  PubMed  Google Scholar 

  37. Bird RB, Armstrong RC, Hassager O. Dynamics of polymeric liquids: fluid mechanics, 2nd edn. New York: Wiley; 1987.

    Google Scholar 

  38. Berthoud HR, Hennig G, Campbell M, Volaufova J, Costa M. Video-based spatio-temporal maps for analysis of gastric motility in vitro: effects of vagal stimulation in guinea-pigs. Neurogastroenterol Mot. 2002;14:677–688.

    Article  Google Scholar 

  39. Janssen PWM, Lentle RG, Hulls C, Ravindran V, Amerah AM. Spatiotemporal mapping of the motility of the isolated chicken caecum. J Comp Physiol. 2009;B179:593–604.

    Google Scholar 

  40. Mandrek K, Golenhofen K. Phasic-rhythmical and tonic components in gastrointestinal motility. Prog Clin Biol Res. 1990;327:463–481.

    CAS  PubMed  Google Scholar 

  41. Zhao J, Liao D, Gregersen H. Tension and stress in the rat and rabbit stomach are location-and direction-dependent. Neurogastroenterol Mot. 2005;17:388–398.

    Article  CAS  Google Scholar 

  42. Azpiroz F, Malagelada JR. Physiological variations in canine gastric tone measured by an electronic barostat. Am J Physiol. 1985;248:G229–G237.

    CAS  PubMed  Google Scholar 

  43. Blackshaw LA, Grundy D, Scratcherd T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of the ferret corpus. J Auton Nerv Syst. 1987;18:19–24.

    Article  CAS  PubMed  Google Scholar 

  44. Wood JD. Physiology of the enteric nervous system. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven; 1994:423–482.

    Google Scholar 

  45. Won KJ, Sanders KM, Ward SM. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci USA. 2005;102:14913–14918.

    Article  CAS  PubMed  Google Scholar 

  46. Gregersen H, Hausken T, Yang J, Odegaard S, Gilja OH. Mechanosensory properties in the human gastric antrum evaluated using B-mode ultrasonography during volume-controlled antral distension. Am J Physiol. 2006;290:G876–G882.

    CAS  Google Scholar 

  47. Regen DM. Tensions and stresses of ellipsoidal chambers. Ann Biomed Eng. 1996;24:400–417.

    Article  CAS  PubMed  Google Scholar 

  48. Liao D, Gregersen H, Hausken T, Gilja OH, Mundt M, Kassab G. Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo. Neurogastroenterol Mot. 2004;16:315–324.

    Article  CAS  Google Scholar 

  49. Distrutti E, Azpiroz F, Soldevilla A, Malagelada JR. Gastric wall tension determines perception of gastric distention. Gastroenterology. 1999;116:1035–1042.

    Article  CAS  PubMed  Google Scholar 

  50. Hirst GDS, Beckett EAH, Sanders KM, Ward SM. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. J Physiol. 2002;540:1003–1012.

    Article  CAS  PubMed  Google Scholar 

  51. Hennig GW, Brookes SJH, Costa M. Excitatory and inhibitory motor reflexes in the isolated guinea-pig stomach. J Physiol. 1997;501:197–212.

    Article  PubMed  Google Scholar 

  52. Lammers W, Ver Donck L, Stephen B, Smets D, Schuurkes JAJ. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am J Physiol. 2009;296:G1200–G1210.

    CAS  Google Scholar 

  53. Hashitani H, Garcia-Londoño AP, Hirst GDS, Edwards FR. Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach. J Physiol. 2005;569:459–465.

    Article  CAS  PubMed  Google Scholar 

  54. Lin HC, Zhao XT, Chung B, Gu YG, Elashoff JD. Frequency of gastric pacesetter potential depends on volume and site of distension. Am J Physiol. 1996;270:G470–G475.

    CAS  PubMed  Google Scholar 

  55. Gregersen H, Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol Mot. 1996;8:277–297.

    CAS  Google Scholar 

  56. Novitol R, Coffin B, Azpiroz F, Mearin F, Serra J, Malagelada JR. Gastric tone determines the sensitivity of the stomach to distension. Gastroenterology. 1995;108:330–336.

    Article  Google Scholar 

  57. Ahmed AB, Gilja OH, Hausken T, Gregersen H, Matre K. Strain measurement during antral contractions by ultrasound strain rate imaging: influence of erythromycin. Neurogastroenterol Mot. 2009;21:170–179.

    Article  CAS  Google Scholar 

  58. Andrews PL, Grundy D, Scratcherd T. Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol. 1980;298:79–84.

    CAS  PubMed  Google Scholar 

  59. Urbain JL, Van Cutsem E, Siegel JA, et al. Visualization and characterization of gastric contractions using a radionuclide technique. Am J Physiol. 1990;259:G1062–G1067.

    CAS  PubMed  Google Scholar 

  60. Carlson HC, Code CF, Nelson RA. Motor action of the canine gastroduodenal junction: a cineradiographic, pressure, and electric study. Dig Dis Sci. 1966;11:155–172.

    Article  CAS  Google Scholar 

  61. Keinke O, Ehrlein HJ. Effect of oleic acid on canine gastroduodenal motility, pyloric diameter and gastric emptying. Q J Exp Physiol. 1983;68:675–686.

    CAS  PubMed  Google Scholar 

  62. Prove J, Ehrlein HJ. Motor function of gastric antrum and pylorus for evacuation of low and high viscosity meals in dogs. Gut. 1982;23:150–156.

    Article  CAS  PubMed  Google Scholar 

  63. Russell J, Bass P. Canine gastric emptying of fiber meals: Influence of meal viscosity and antroduodenal motility. Am J Physiol. 1985;249:G662–G667.

    CAS  PubMed  Google Scholar 

  64. Hennig GW, Hirst GDS, Park KJ, et al. Propagation of pacemaker activity in the guinea-pig antrum. J Physiol. 2004;556:585–599.

    Article  CAS  PubMed  Google Scholar 

  65. Gao C, Arendt-Nielsen L, Liu W, Petersen P, Drewes AM, Gregersen H. Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am J Physiol. 2003;284:G461–G471.

    CAS  Google Scholar 

  66. Barlow JD, Gregersen H, Thompson DG. Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am J Physiol. 2002;282:G683–G689.

    CAS  Google Scholar 

  67. Yuan SY, Costa M, Brookes SJH. Neuronal control of the pyloric sphincter of the guinea-pig. Neurogastroenterol Mot. 2001;13:187–198.

    Article  CAS  Google Scholar 

  68. Mroz CT, Kelly KA. The role of the extrinsic antral nerves in the regulation of gastric emptying. Surg Gynecol Obstet. 1977;145:369–377.

    CAS  PubMed  Google Scholar 

  69. Allescher HD, Daniel EE, Dent J, Fox JE, Kostolanska F. Extrinsic and intrinsic neural control of pyloric sphincter pressure in the dog. J Physiol. 1988;401:17–38.

    CAS  PubMed  Google Scholar 

  70. Cannon WB. The movements of the stomach studied by means of the röntgen rays. Am J Physiol. 1898;1:359–382.

    Google Scholar 

  71. Huizinga JD, Lammers WJEP. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol. 2009;296:G1–G8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Lentle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lentle, R.G., Janssen, P.W.M., Goh, K. et al. Quantification of the Effects of the Volume and Viscosity of Gastric Contents on Antral and Fundic Activity in the Rat Stomach Maintained Ex Vivo. Dig Dis Sci 55, 3349–3360 (2010). https://doi.org/10.1007/s10620-010-1164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1164-y

Keywords

Navigation