Skip to main content
Log in

In vitro models of intestinal epithelial cell differentiation

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The intestinal epithelium is a particularly interesting tissue as (1) it is in a constant cell renewal from a stem cell pool located in the crypts which form, with the underlying fibroblasts, a stem cell niche and (2) the pluripotent stem cells give rise to four main cell types: enterocytes, mucus, endocrine, and Paneth cells. The mechanisms leading to the determination of phenotype commitment and cell-specific expressions are still poorly understood. Although transgenic mouse models are powerful tools for elucidating the molecular cascades implicated in these processes, cell culture approaches bring easy and elegant ways to study cellular behavior, cell interactions, and cell signaling pathways for example. In the present review, we will describe the major tissue culture technologies that allow differentiation of epithelial cells from undifferentiated embryonic or crypt cells. We will point to the necessity of the re-creation of a complex microenvironment that allows full differentiation process to occur. We will also summarize the characteristics and interesting properties of the cell lines established from human colorectal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFTR:

cystic fibrosis transmembrane conductance regulator

FAE:

follicle associated epithelium

GFP:

green fluorescent protein

FHI cells:

fetal human intestinal cells

IEC:

intestinal epithelial cells

L-PK:

L-type pyruvate kinase

MAP kinase:

mitogen-activated protein kinase

MTX:

methotrexate

ngn3:

neurogenin 3

ZO-1:

zonula occludens-1

References

  • Abud HE, Lock P, Heath JK. Efficient gene transfer into the epithelial cell layer of embryonic mouse intestine using low-voltage electroporation. Gastroenterology. 2004;126:1779–87.

    Article  PubMed  CAS  Google Scholar 

  • Augeron C, Laboisse CL. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treament with sodium butyrate. Cancer Res. 1984;44:3961–9.

    PubMed  CAS  Google Scholar 

  • Basson MD, Turowski G, Emenaker NJ. Regulation of human (Caco-2) intestinal epithelial cell differentiation by extracellular matrix proteins. Exp Cell Res. 1996;225:301–5.

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu J-F. Recent work with migration/patterns of expression: cell-matrix interactions in human intestinal cell differentiation. In: Halter F, Winton D, Wright NA, eds. The gut as a model in cell and molecular biology. London: Kluwer Academic; 1997:165–79.

    Google Scholar 

  • Beaulieu J-F. Integrins and human intestinal cell functions. Front Biosci. 1999;4:310–312.

    Google Scholar 

  • Bens M, Bogdanova A, Cluzeaud F, et al. Transimmortalized mouse intestinal cells (m-ICcl2) that maintain a crypt phenotype. Am J Physiol Cell Physiol. 1996;39:C1666–74.

    Google Scholar 

  • Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R. Integrins in invasive growth. J Clin Invest. 2002;109:999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Chantret I, Rodolosse A, Barbat A, et al. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2—evidence for glucose-dependent negative regulation. J Cell Sci. 1994;107:213–25.

    PubMed  CAS  Google Scholar 

  • De Arcangelis A, Lefebvre O, Méchine-Neuville A, et al. Overexpression of laminin α1 chain in colonic cancer cells induces an increase in tumor growth. Int J Cancer. 2001;94:44–53.

    Article  PubMed  Google Scholar 

  • Ericsson A, Kotarsky K, Svensson M, Sigvardsson M, Agace W. Functional characterization of the CCL25 promoter in small intestinal epithelial cells suggests a regulatory role for caudal-related homeobox (Cdx) transcription factors. J Immunol. 2006;176:3642–51.

    PubMed  CAS  Google Scholar 

  • Fogh J, Trempe G. New human tumor cell lines. In: Fogh J, ed. Human Tumor Cells in vitro. New York: Plenum Press; 1975;115–41.

    Google Scholar 

  • Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59:221–5.

    PubMed  CAS  Google Scholar 

  • Fukuda K, Sakamoto N, Narita T, et al. Application of efficient and specific gene transfer systems and organ culture techniques for the elucidation of mechanisms of epithelial—mesenchymal interaction in the developing gut. Dev Growth Differ. 2000;42:207–11.

    Article  PubMed  CAS  Google Scholar 

  • Gayet J, Zhou XP, Duval A, et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene. 2001;20:5025–32.

    Article  PubMed  CAS  Google Scholar 

  • Jenny M, Uhl C, Roche C, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002;21:6338–47.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger M, Lacroix B, Marxer A, Hauri HP, Haffen K. Fetal gut mesenchyme induces differentiation of cultured intestinal endoderm and crypt cells. Dev Biol. 1986;113:474–83.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger M, Haffen K, Simon-Assmann P. Intestinal tissue and cell cultures. Differentiation. 1987;36:71–85.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger M, Bouziges F, Simon-Assmann P, Haffen K. Influence of cell interactions on intestinal brush border enzyme expression. In: Kotyk A, Skoda J, Paces V, Kostka V, eds. Highlights modern biochem. Zeist: VSP International Science Publishers; 1989;1103–12.

    Google Scholar 

  • Kedinger M, Duluc I, Fritsch C, Lorentz O, Plateroti M, Freund J-N. Intestinal epithelial—mesenchymal cell interactions. Ann NY Acad Sci. 1998;859:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kedinger M, Freund J-N, Launay JF, Simon-Assmann P. Cell interactions through the basement membrane in intestinal development and differentiation. In: Sanderson IR, Walker WA, eds. Development of the gastrointestinal tract. London: B.C. Decker; 2000;83–102.

    Google Scholar 

  • Kerneis S, Pringault E. Plasticity of the gastrointestinal epithelium: the M cell paradigm and opportunism of pathogenic microorganisms. Semin Immunol. 1999;11:205–15.

    Article  PubMed  CAS  Google Scholar 

  • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997;277:949–52.

    Article  PubMed  CAS  Google Scholar 

  • Kirkland SC. Endocrine differentiation by a human rectal adenocarcinoma cell line (HRA-19). Differentiation. 1986;33:148–55.

    Article  PubMed  CAS  Google Scholar 

  • Lesuffleur T, Barbat A, Luccioni C, et al. Dihydrofolate reductase gene amplification-associated shift of differentiation in methotrexate-adapted HT-29 cells. J Cell Biol. 1991a; 115:1409–18.

    Article  CAS  Google Scholar 

  • Lesuffleur T, Kornowski A, Luccioni C, et al. Adaptation to 5-fluorouracil of the heterogeneous human colon tumor cell line HT-29 results in the selection of cells committed to differentiation. Int J Cancer. 1991b; 49:721–30.

    Article  CAS  Google Scholar 

  • Lesuffleur T, Violette S, Vasile-Pandrea I, Dussaulx E, Barbat A, Muleris M, Zweibaum A, et al. Resistance to high concentrations of methotrexate and 5-fluorouracil differentiated HT-29 colon-cancer cells is restricted to cells of enterocytic phenotype. Int J Cancer. 1998;76:383–92.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Edgar D, Fassler R, Wadsworth W, Yurchenco PD. The role of laminin in embryonic cell polarization and tissue organization. Dev Cell. 2003;4:613–24.

    Article  PubMed  CAS  Google Scholar 

  • Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20:255–84.

    Article  PubMed  CAS  Google Scholar 

  • Neutra M, Louvard D. Differentiation of intestinal cells in vitro. In: Functional epithelial cells in culture. New York: Alan R. Liss; 1989;363–98.

    Google Scholar 

  • Pageot LP, Perreault N, Basora N, Francoeur C, Magny P, Beaulieu J-F. Human cell models to study small intestinal functions: recapitulation of the crypt—villus axis. Microsc Res Technique. 2000;49:394–406.

    Article  CAS  Google Scholar 

  • Perreault N, Beaulieu J-F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res. 1996;224:354–64.

    Article  PubMed  CAS  Google Scholar 

  • Pinto M, Robine-Leon S, Appay MD, et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell. 1983;47:323–30.

    Google Scholar 

  • Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cells: the mucosal governor. Int J Exp Pathol. 1997;78:219–43.

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A, Wands J, Trelstad RL, Isselbacher KJ. Epithelioid cell cultures from rat small intestine characterization by morphologic and immunologic criteria. J Cell Biol. 1979;80:248–65.

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A, Beaulieu J-F. Cell dynamics and differentiation of conditionally immortalized human intestinal epithelial cells. Gastroenterology. 1997;113:1198–213.

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A, Tian JQ, Goke M, Podolsky DK. Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am J Physiol. 1999;277: G1027–40.

    PubMed  CAS  Google Scholar 

  • Quinlan JM, Wu W-Y, Hornsey MA, Tosh D, Slack JM. In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes. BMC Dev Biol. 2006;6:24.

    Article  PubMed  Google Scholar 

  • Roberts DJ. Embryology of the gastrointestinal tract. In: Sanderson IR, Walker WA, eds. Development of the gastrointestinal tract. London: B.C. Decker; 2000;1–12.

    Google Scholar 

  • Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol. 2004;20:695–723.

    Article  PubMed  CAS  Google Scholar 

  • Simo P, Simon-Assmann P, Arnold C, Kedinger M. Mesenchyme-mediated effect of dexamethasone on laminin in cocultures of embryonic gut epithelial cells and mesenchyme-derived cells. J Cell Sci. 1992;101:161–71.

    PubMed  CAS  Google Scholar 

  • Simon-Assmann P, Kedinger M. Heterotypic cellular cooperation in gut morphogenesis and differentiation. Semin Cell Biol. 1993;4:221–30.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Assmann P, Kedinger M. Tissues recombinants to study extracellular matrix targeting to basement membranes. In: Streuli C, Grant M, eds. Methods in molecular biology. Totowa, NJ: Humana Press; 2000:311–9.

    Google Scholar 

  • Simon-Assmann P, Lefebvre O, Bellissent-Waydelich A, Olsen J, Orian-Rousseau V, De Arcangelis A. The laminins: role in intestinal morphogenesis and differentiation. Ann NY Acad Sci. 1998;859:46–64.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Assmann P, Bolcato-Bellemin A-L, Turck N, et al. Basement membrane laminins in normal and pathological intestine. In: Galle PR, Gerken G, Schmidt WE, Wiedenmann B, eds. Disease progression and carcinogenesis in the gastrointestinal tract. London: Kluwer Academic; 2003:223–39.

    Google Scholar 

  • Stappenbeck TS, Wong MH, Saam JR, Mysorekar IU, Gordon JI. Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium. Curr Opin Cell Biol. 1998;10:702–9.

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann J, Bellissent-Waydelich A, Fontao L, Launay JF, Simon-Assmann P. Adhesion complexes implicated in intestinal epithelial cell—matrix interactions. Microsc Res Technique. 2000;51:179–90.

    Article  CAS  Google Scholar 

  • Teller IC, Beaulieu J-F. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med. 2001;3:1–18.

    Article  Google Scholar 

  • Tou L, Liu Q, Shivdasani RA. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol Cell Biol. 2004;24:3132–9.

    Article  PubMed  CAS  Google Scholar 

  • Turck N, Richert S, Gendry P, et al. Proteomic analysis of nuclear proteins from proliferative and differentiated human colonic intestinal epithelial cells. Proteomics. 2004;4:93–105.

    Article  PubMed  CAS  Google Scholar 

  • Turck N, Gross I, Gendry P, et al. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells. Exp Cell Res. 2005;303:494–503.

    Article  PubMed  CAS  Google Scholar 

  • Turck N, Lefebvre O, Gross I, et al. Effect of laminin-1 on intestinal cell differentiation involves inhibition of nuclear nucleolin. J Cell Physiol. 2006;206:545–55.

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle A. Immortalized renal proximal and collecting duct cell lines derived from transgenic mice harboring L-type pyruvate kinase promoters as tools for pharmacological and toxicological studies. Cell Biol Toxicol. 2002;18:321–8.

    Article  PubMed  CAS  Google Scholar 

  • Yasugi S, Mizuno T. Mesenchymal influences as microenvironmental factors regulating morphogenesis and cytodifferentiation of gut epithelial cells. In: Kramer B, Rawdon B, eds. Embryos, endocrine cells and the neural crest. Witwatersrand: Witwatersrand University Press; 1996;99–113.

    Google Scholar 

  • Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38.

    Article  PubMed  CAS  Google Scholar 

  • Zweibaum A, Laburthe M, Grasset E, Louvard D. The use of cultured cell lines in studies of intestinal cell differentiation and function. In: Field M, Frizzell RA, eds. Handbook of physiology. The gastrointestinal system. American Physiological Society; 1991:223–55.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Simon-Assmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon-Assmann, P., Turck, N., Sidhoum-Jenny, M. et al. In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol 23, 241–256 (2007). https://doi.org/10.1007/s10565-006-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0175-0

Keywords

Navigation