Skip to main content

Advertisement

Log in

Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2017

This article has been updated

Abstract

G protein-coupled receptors (GPCRs) comprise the main signal-transmitting components in the cell membrane. Over the past several years, biochemical and structural analyses have immensely enhanced our knowledge of GPCR involvement in health and disease states. The present review focuses on GPCRs that are cancer drivers, involved in tumor growth and development. Our aim is to highlight the involvement of stabilized β-catenin molecular machinery with a specific array of GPCRs. We discuss recent advances in understanding the molecular path leading to β-catenin nuclear localization and transcriptional activity and their implications for future cancer therapy research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 20 December 2017

    The original version of this article unfortunately contained a mistake. The family name of Beatrice Uziely was mistakenly spelled as Uzieky. The correct name is now presented above.

References

  1. Bjarnadottir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R., & Schioth, H. B. (2006). Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 88(3), 263–273.

    Article  CAS  PubMed  Google Scholar 

  2. Bockaert, J., & Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. The EMBO Journal, 18(7), 1723–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feigin, M. E. (2013). Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. The FEBS Journal, 280(19), 4729–4738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hollenberg, M. D., Mihara, K., Polley, D., Suen, J. Y., Han, A., Fairlie, D. P., et al. (2014). Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. British Journal of Pharmacology, 171(5), 1180–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kenakin, T. (2012). The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacology & Toxicology, 13, 3.

    Article  CAS  Google Scholar 

  6. Miao, Y., & McCammon, J. A. (2016). G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology, 41, 83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wisler, J. W., Xiao, K., Thomsen, A. R., & Lefkowitz, R. J. (2014). Recent developments in biased agonism. Current Opinion in Cell Biology, 27, 18–24.

    Article  CAS  PubMed  Google Scholar 

  8. Premont, R. T., & Gainetdinov, R. R. (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annual Review of Physiology, 69, 511–534.

    Article  CAS  PubMed  Google Scholar 

  9. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.

    Article  CAS  PubMed  Google Scholar 

  10. Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, T., DeCostanzo, A. J., Liu, X., Wang, H., Hallagan, S., Moon, R. T., et al. (2001). G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 292(5522), 1718–1722.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, H. Y., & Malbon, C. C. (2004). Wnt-frizzled signaling to G-protein-coupled effectors. Cellular and Molecular Life Sciences: CMLS, 61(1), 69–75.

    Article  CAS  PubMed  Google Scholar 

  13. Jilka, R. L. (2007). Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone, 40(6), 1434–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Potts, J. T., & Gardella, T. J. (2007). Progress, paradox, and potential: parathyroid hormone research over five decades. Annals of the New York Academy of Sciences, 1117, 196–208.

    Article  CAS  PubMed  Google Scholar 

  15. Honore, P., Luger, N. M., Sabino, M. A., Schwei, M. J., Rogers, S. D., Mach, D. B., et al. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature Medicine, 6(5), 521–528.

    Article  CAS  PubMed  Google Scholar 

  16. Southby, J., Kissin, M. W., Danks, J. A., Hayman, J. A., Moseley, J. M., Henderson, M. A., et al. (1990). Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Research, 50(23), 7710–7716.

    CAS  PubMed  Google Scholar 

  17. McCauley, L. K., & Martin, T. J. (2012). Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 27(6), 1231–1239.

    Article  CAS  Google Scholar 

  18. Allison, D. C., Carney, S. C., Ahlmann, E. R., Hendifar, A., Chawla, S., Fedenko, A., et al. (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma, 2012, 704872.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fearon, K., Arends, J., & Baracos, V. (2013). Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews. Clinical Oncology, 10(2), 90–99.

    Article  CAS  PubMed  Google Scholar 

  20. Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism, 16(2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  21. Kir, S., White, J. P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V. E., et al. (2014). Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature, 513(7516), 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ovesen, L., Allingstrup, L., Hannibal, J., Mortensen, E. L., & Hansen, O. P. (1993). Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomized study. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 11(10), 2043–2049.

    Article  CAS  Google Scholar 

  23. Tisdale, M. J. (2009). Mechanisms of cancer cachexia. Physiological Reviews, 89(2), 381–410. https://doi.org/10.1152/physrev.00016.2008.

    Article  CAS  PubMed  Google Scholar 

  24. Barnes, M. R., Duckworth, D. M., & Beeley, L. J. (1998). Frizzled proteins constitute a novel family of G protein-coupled receptors, most closely related to the secretin family. Trends in Pharmacological Sciences, 19(10), 399–400.

    Article  CAS  PubMed  Google Scholar 

  25. Romero, G., Sneddon, W. B., Yang, Y., Wheeler, D., Blair, H. C., & Friedman, P. A. (2010). Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-catenin signaling and osteoclastogenesis. The Journal of Biological Chemistry, 285(19), 14756–14763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyce, B. F., Xing, L., & Chen, D. (2005). Osteoprotegerin, the bone protector, is a surprising target for beta-catenin signaling. Cell Metabolism, 2(6), 344–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldring, S. R., & Goldring, M. B. (2007). Eating bone or adding it: the Wnt pathway decides. Nature Medicine, 13(2), 133–134.

    Article  CAS  PubMed  Google Scholar 

  28. Holmen, S. L., Zylstra, C. R., Mukherjee, A., Sigler, R. E., Faugere, M. C., Bouxsein, M. L., et al. (2005). Essential role of beta-catenin in postnatal bone acquisition. The Journal of Biological Chemistry, 280(22), 21162–21168.

    Article  CAS  PubMed  Google Scholar 

  29. Yao, W., Cheng, Z., Shahnazari, M., Dai, W., Johnson, M. L., & Lane, N. E. (2010). Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 25(2), 190–199.

    Article  CAS  Google Scholar 

  30. Diarra, D., Stolina, M., Polzer, K., Zwerina, J., Ominsky, M. S., Dwyer, D., et al. (2007). Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 13(2), 156–163.

    Article  CAS  PubMed  Google Scholar 

  31. Wan, M., Yang, C., Li, J., Wu, X., Yuan, H., Ma, H., et al. (2008). Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes & Development, 22(21), 2968–2979.

    Article  CAS  Google Scholar 

  32. Torrance, C. J., Jackson, P. E., Montgomery, E., Kinzler, K. W., Vogelstein, B., Wissner, A., et al. (2000). Combinatorial chemoprevention of intestinal neoplasia. Nature Medicine, 6(9), 1024–1028.

    Article  CAS  PubMed  Google Scholar 

  33. Subbaramaiah, K., & Dannenberg, A. J. (2003). Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends in Pharmacological Sciences, 24(2), 96–102. https://doi.org/10.1016/S0165-6147(02)00043-3.

    Article  CAS  PubMed  Google Scholar 

  34. Vane, J. R., & Botting, R. M. (1998). Mechanism of action of nonsteroidal anti-inflammatory drugs. The American Journal of Medicine, 104(3A), 2S–8S discussion 21S-22S.

    Article  CAS  PubMed  Google Scholar 

  35. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.

    Article  CAS  PubMed  Google Scholar 

  36. Hull, M. A., Ko, S. C., & Hawcroft, G. (2004). Prostaglandin EP receptors: targets for treatment and prevention of colorectal cancer? Molecular Cancer Therapeutics, 3(8), 1031–1039.

    CAS  PubMed  Google Scholar 

  37. Backlund, M. G., Mann, J. R., & Dubois, R. N. (2005). Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology, 69(Suppl 1), 28–32.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, D., Wang, H., Brown, J., Daikoku, T., Ning, W., Shi, Q., et al. (2006). CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. The Journal of Experimental Medicine, 203(4), 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majumder, M., Xin, X., Liu, L., Tutunea-Fatan, E., Rodriguez-Torres, M., Vincent, K., et al. (2016). COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT Axis. Stem Cells, 34(9), 2290–2305.

    Article  CAS  PubMed  Google Scholar 

  40. Du, M., Shi, F., Zhang, H., Xia, S., Zhang, M., Ma, J., et al. (2015). Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncology Reports, 34(2), 715–726.

    Article  CAS  PubMed  Google Scholar 

  41. Vaid, M., Singh, T., Prasad, R., Kappes, J. C., & Katiyar, S. K. (2015). Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and beta-catenin signaling molecules. American Journal of Cancer Research, 5(11), 3325–3338.

    PubMed  PubMed Central  Google Scholar 

  42. Auersperg, N. (2011). The origin of ovarian carcinomas: a unifying hypothesis. International Journal of Gynecological Pathology: Official Journal of the International Society of Gynecological Pathologists, 30(1), 12–21.

    Article  Google Scholar 

  43. Kim, J., Coffey, D. M., Creighton, C. J., Yu, Z., Hawkins, S. M., & Matzuk, M. M. (2012). High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3921–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurman, R. J., & Shih Ie, M. (2010). The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. The American Journal of Surgical Pathology, 34(3), 433–443.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kurman, R. J., & Shih Ie, M. (2011). Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Human Pathology, 42(7), 918–931. https://doi.org/10.1016/j.humpath.2011.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, Y., Miron, A., Drapkin, R., Nucci, M. R., Medeiros, F., Saleemuddin, A., et al. (2007). A candidate precursor to serous carcinoma that originates in the distal fallopian tube. The Journal of Pathology, 211(1), 26–35.

    Article  CAS  PubMed  Google Scholar 

  47. Shih Ie, M., & Kurman, R. J. (2004). Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American Journal of Pathology, 164(5), 1511–1518.

    Article  PubMed  Google Scholar 

  48. Auersperg, N., Edelson, M. I., Mok, S. C., Johnson, S. W., & Hamilton, T. C. (1998). The biology of ovarian cancer. Seminars in Oncology, 25(3), 281–304.

    CAS  PubMed  Google Scholar 

  49. Lengyel, E. (2010). Ovarian cancer development and metastasis. The American Journal of Pathology, 177(3), 1053–1064.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mills, G. B., May, C., Hill, M., Campbell, S., Shaw, P., & Marks, A. (1990). Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. The Journal of Clinical Investigation, 86(3), 851–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, Y., Gaudette, D. C., Boynton, J. D., Frankel, A., Fang, X. J., Sharma, A., et al. (1995). Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 1(10), 1223–1232.

    CAS  Google Scholar 

  52. Xu, Y., Shen, Z., Wiper, D. W., Wu, M., Morton, R. E., Elson, P., et al. (1998). Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA, 280(8), 719–723.

    Article  CAS  PubMed  Google Scholar 

  53. Hecht, J. H., Weiner, J. A., Post, S. R., & Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. The Journal of Cell Biology, 135(4), 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, M., Zhong, W. W., Srivastava, N., Slavin, A., Yang, J., Hoey, T., et al. (2005). G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the beta-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 6027–6032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosanò, L., Spinella, F., & Bagnato, A. (2013). Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nature Reviews. Cancer, 13(9), 637–651. https://doi.org/10.1038/nrc3546.

    Article  PubMed  CAS  Google Scholar 

  56. Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M., & Shukla, A. K. (2017). Novel structural insights into GPCR-beta-arrestin interaction and signaling. Trends in Cell Biology, S0962-8924(17), 30087–30089.

    Google Scholar 

  57. Cahill 3rd, T. J., Thomsen, A. R., Tarrasch, J. T., Plouffe, B., Nguyen, A. H., Yang, F., et al. (2017). Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2562–2567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jean-Charles, P. Y., Kaur, S., & Shenoy, S. K. (2017). G protein-coupled receptor signaling through beta-arrestin-dependent mechanisms. Journal of Cardiovascular Pharmacology, 70(3), 142–158.

    Article  CAS  PubMed  Google Scholar 

  59. Hinsley, E. E., Hunt, S., Hunter, K. D., Whawell, S. A., & Lambert, D. W. (2012). Endothelin-1 stimulates motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions. International Journal of Cancer, 130(1), 40–47.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, T. H., Xiong, H., Zhang, Z., & Ren, B. (2005). Beta-catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene, 24(4), 597–604.

    Article  CAS  PubMed  Google Scholar 

  61. Rosanò, L., Cianfrocca, R., Masi, S., Spinella, F., Di Castro, V., Biroccio, A., et al. (2009). Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2806–2811.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rosanò, L., Cianfrocca, R., Tocci, P., Spinella, F., Di Castro, V., Spadaro, F., et al. (2013). Beta-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced beta-catenin signaling. Oncogene, 32(42), 5066–5077.

    Article  PubMed  CAS  Google Scholar 

  63. Spinella, F., Caprara, V., Di Castro, V., Rosano, L., Cianfrocca, R., Natali, P. G., et al. (2013). Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. Journal of Molecular Medicine, 91(3), 395–405.

    Article  CAS  PubMed  Google Scholar 

  64. Sun, P., Xiong, H., Kim, T. H., Ren, B., & Zhang, Z. (2006). Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Molecular Pharmacology, 69(2), 520–531.

    Article  CAS  PubMed  Google Scholar 

  65. de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360), 293–297.

    Article  PubMed  CAS  Google Scholar 

  66. Carmon, K. S., Gong, X., Lin, Q., Thomas, A., & Liu, Q. (2011). R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11452–11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195–200.

    Article  CAS  PubMed  Google Scholar 

  68. Koo, B. K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., et al. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665–669.

    Article  CAS  PubMed  Google Scholar 

  69. Barker, N., Ridgway, R. A., van Es, J. H., van de Wetering, M., Begthel, H., van den Born, M., et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457(7229), 608–611.

    Article  CAS  PubMed  Google Scholar 

  70. Barker, N., Tan, S., & Clevers, H. (2013). Lgr proteins in epithelial stem cell biology. Development, 140(12), 2484–2494.

    Article  CAS  PubMed  Google Scholar 

  71. Munoz, J., Stange, D. E., Schepers, A. G., van de Wetering, M., Koo, B. K., Itzkovitz, S., et al. (2012). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. The EMBO Journal, 31(14), 3079–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van der Flier, L. G., van Gijn, M. E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D. E., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell, 136(5), 903–912.

    Article  PubMed  CAS  Google Scholar 

  73. Ramalingam, S., Daughtridge, G. W., Johnston, M. J., Gracz, A. D., & Magness, S. T. (2012). Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302(1), G10–G20.

    Article  CAS  PubMed  Google Scholar 

  74. Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43(1), 34–41.

    Article  CAS  PubMed  Google Scholar 

  75. Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell, 154(2), 274–284.

    Article  CAS  PubMed  Google Scholar 

  76. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.

    Article  CAS  PubMed  Google Scholar 

  77. Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.

    Article  CAS  PubMed  Google Scholar 

  78. Marikawa, Y. (2006). Wnt/beta-catenin signaling and body plan formation in mouse embryos. Seminars in Cell & Developmental Biology, 17(2), 175–184.

    Article  CAS  Google Scholar 

  79. Harland, R., & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annual Review of Cell and Developmental Biology, 13, 611–667.

    Article  CAS  PubMed  Google Scholar 

  80. Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275(5307), 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  81. Valenta, T., Hausmann, G., & Basler, K. (2012). The many faces and functions of beta-catenin. The EMBO Journal, 31(12), 2714–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Major, M. B., Roberts, B. S., Berndt, J. D., Marine, S., Anastas, J., Chung, N., et al. (2008). New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. Science Signaling, 1(45), ra12.

    PubMed  Google Scholar 

  83. Regard, J. B., Cherman, N., Palmer, D., Kuznetsov, S. A., Celi, F. S., Guettier, J. M., et al. (2011). Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20101–20106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katanaev, V. L., Ponzielli, R., Semeriva, M., & Tomlinson, A. (2005). Trimeric G protein-dependent frizzled signaling in Drosophila. Cell, 120(1), 111–122.

    Article  CAS  PubMed  Google Scholar 

  85. Mo, J. S., Yu, F. X., Gong, R., Brown, J. H., & Guan, K. L. (2012). Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes & Development, 26(19), 2138–2143.

    Article  CAS  Google Scholar 

  86. Pan, D. (2010). The hippo signaling pathway in development and cancer. Developmental Cell, 19(4), 491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410–413.

    Article  CAS  PubMed  Google Scholar 

  88. Feng, X., Degese, M. S., Iglesias-Bartolome, R., Vaque, J. P., Molinolo, A. A., Rodrigues, M., et al. (2014). Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell, 25(6), 831–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, H. W., Kim, Y. C., Yu, B., Moroishi, T., Mo, J. S., Plouffe, S. W., et al. (2015). Alternative Wnt signaling activates YAP/TAZ. Cell, 162(4), 780–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meng, Z., Moroishi, T., & Guan, K. L. (2016). Mechanisms of Hippo pathway regulation. Genes & Development, 30(1), 1–17.

    Article  CAS  Google Scholar 

  91. Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4), 780–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burger, M. M. (1970). Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature, 227(5254), 170–171.

    Article  CAS  PubMed  Google Scholar 

  93. Carney, D. H., & Cunningham, D. D. (1977). Initiation of check cell division by trypsin action at the cell surface. Nature, 268(5621), 602–606.

    Article  CAS  PubMed  Google Scholar 

  94. Chen, L. B., & Buchanan, J. M. (1975). Mitogenic activity of blood components. I. Thrombin and prothrombin. Proceedings of the National Academy of Sciences of the United States of America, 72(1), 131–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., et al. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Letters, 288(1–2), 123–128.

    Article  CAS  PubMed  Google Scholar 

  96. Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  97. Coughlin, S. R. (1994). Protease-activated receptors start a family. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9200–9202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nystedt, S., Emilsson, K., Wahlestedt, C., & Sundelin, J. (1994). Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9208–9212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O'Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., Woulfe, D. S., et al. (2000). Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. The Journal of Biological Chemistry, 275(18), 13502–13509.

    Article  PubMed  Google Scholar 

  100. Jaber, M., Maoz, M., Kancharla, A., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2014). Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cellular and Molecular Life Sciences: CMLS, 71(13), 2517–2533.

    Article  CAS  PubMed  Google Scholar 

  101. Sevigny, L. M., Austin, K. M., Zhang, P., Kasuda, S., Koukos, G., Sharifi, S., et al. (2011). Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(12), e100–e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McLaughlin, J. N., Patterson, M. M., & Malik, A. B. (2007). Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5662–5667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., et al. (2006). Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation, 113(9), 1244–1254.

    Article  CAS  PubMed  Google Scholar 

  104. Blackhart, B. D., Emilsson, K., Nguyen, D., Teng, W., Martelli, A. J., Nystedt, S., et al. (1996). Ligand cross-reactivity within the protease-activated receptor family. The Journal of Biological Chemistry, 271(28), 16466–16471.

    Article  CAS  PubMed  Google Scholar 

  105. Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., et al. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature, 386(6624), 502–506.

    Article  CAS  PubMed  Google Scholar 

  106. Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., et al. (1998). A dual thrombin receptor system for platelet activation. Nature, 394(6694), 690–694.

    Article  CAS  PubMed  Google Scholar 

  107. Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., et al. (1998). Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6642–6646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., et al. (1998). Thrombin receptor overexpression in malignant and physiological invasion processes. Nature Medicine, 4(8), 909–914.

    Article  CAS  PubMed  Google Scholar 

  109. Nag, J. K., Kancharla, A., Maoz, M., Turm, H., Agranovich, D., Gupta, C. L., et al. (2017). Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated beta-catenin stabilization. Oncotarget, 8(24), 38650–38667.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kancharla, A., Maoz, M., Jaber, M., Agranovich, D., Peretz, T., Grisaru-Granovsky, S., et al. (2015). PH motifs in PAR1&2 endow breast cancer growth. Nature Communications, 6, 8853–8865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yin, Y. J., Katz, V., Salah, Z., Maoz, M., Cohen, I., Uziely, B., et al. (2006). Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization. Cancer Research, 66(10), 5224–5233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Bar-Shavit.

Additional information

The original version of this article was revised: The family name of Beatrice Uziely was mistakenly spelled as Uzieky. The correct name is now presented above.

A correction to this article is available online at https://doi.org/10.1007/s10555-017-9721-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, J.K., Rudina, T., Maoz, M. et al. Cancer driver G-protein coupled receptor (GPCR) induced β-catenin nuclear localization: the transcriptional junction. Cancer Metastasis Rev 37, 147–157 (2018). https://doi.org/10.1007/s10555-017-9711-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9711-z

Keywords

Navigation